USING POLYMERIC SHELLS OF THE DRAINAGE SYSTEMS OF RAPID FILTERS FOR TERTIARY TREATMENT

Authors

Abstract

It is proposed to increase the efficiency of the rapid filters by using for tertiary treatment the drainage systems with a shell of porous fibrous polymeric materials. The rationale for this solution was carried out by means of mathematical modeling. An improved mathematical model of consistent filtration of low-concentration suspension through a layer of granular filtering media and a porous shell is presented. The change in the pore size over to the thickness of the porous membrane is taken into account. Filtration with a gradual pore plugging of the porous membrane is considered. The basis of the mathematical model is made up of equations: filtration, transport of suspended solids by the flow of a filtered fluid, mass transfer. Also the relations that take into account the influence of colmatation and parameters of granular and fibrous media are used. The relation for calculating the resistivity of a porous membrane, taking into account the size of its pores, was derived from the Hagen-Poiseuille equation. This relation is similar to the Kozeny-Karman equation for a granular media.

The influence of the parameters of a granular media and the porous shell on the efficiency of the filtration was studied using a mathematical model. These parameters include the equivalent grain diameter of the granular media, the maximum and minimum pore diameter of the porous membrane, and the distribution type of the pore size over the shell thickness. The use of a porous membrane allows one to increase the equivalent grain diameter of a granular media. As a result, the pollution over the thickness of the granular media is distributed more evenly. Part of the suspended solids is retained in the porous membrane. The variants of linear and non-linear distribution of the equivalent pore diameter over the thickness of the membrane are considered. The calculations were carried out for the filtration mode of constant productivity. The efficiency criterion is the ratio of the duration of operation between washes of a filter with tertiary treatment on the drainage system to the same parameter for a filter of traditional design.

It is shown that the use of a porous membrane with variable pore size allows to additionally increase the efficiency of tertiary treatment. In the membrane of such a design, pollutions, as in the granular layer, are distributed more evenly over its thickness. As a result, the growth of head losses slows down, the duration of the filter operation between washings increases.

Keywords: granular filtering media, suspended solids, drainage system, porous membrane, polymeric fibrous shells, mathematical model

 

Author Biographies

, Communal Enterprise «Kharkovvodokanal»

Заступник генерального директора з експлуатації водопровідного господарства - директор Комплексу «Харківводопостачання»

, Kharkov National University of Civil Engineering and Architecture

доктор технічних наук, професор, завідувач кафедри водопостачання, каналізації і гідравліки

, Kharkov National University of Civil Engineering and Architecture

доктор технічних наук, доцент, професор кафедри водопостачання, каналізації і гідравліки

, Kharkov National University of Civil Engineering and Architecture

кандидат технічних наук, доцент, доцент кафедри водопостачання, каналізації і гідравліки

References

Література

Журба, М.Г. Водоснабжение. Проектирование систем и сооружений: в 3 т. [Текст]: учеб. пособие / М.Г. Журба, Л.И. Соколов, Ж М. Говорова. – [3-е изд., доп. и перераб]. – Т. 2. Очистка и кондиционирование природных вод. – М.: Издательство Ассоциации строительных вузов, 2010. – 552 с.

Теоретические основы очистки воды [Текст] / Н.И. Куликов, А.Я. Найманов, Н.П. Омельченко, В.Н. Чернышев. – Донецк: Изд-во «Ноулидж» (Донецкое отделение), 2009. – 298 с.

Тугай, А.М. Водопостачання [Текст]: підручник / А.М. Тугай, В.О. Орлов. – К.: Знання, 2009. – 735 с.

Грабовский, П.А. Промывка водоочистных фильтров / П.А. Грабовский, Г.М. Ларкина, В.И. Прогульный. – Одесса: Оптимум, 2012. – 240 с.

Al-Rawi, S. (2009). Introducing sand filter capping for turbidity removal for potable water treatment plants of Mosul/Iraq. International Journal of Water Resources and Environmental Engineering, 1 (1), 11-19.

Odira, P., Ndiba, P. (2007). Performance of crushed coconut shell dual media filter. Journal of Civil Engineering Research and Practice, 4, 2. Retrieved from

https://www.ajol.info/index.php/jcerp/article/view/29176

Gawade, S., Misal S. (2016). Analysis of PVC rapid sand filter. Imperial Journal of Interdisciplinary Research (IJIR), 2(9), 1370-1373.

Mohanty, B. Keval, P., Beran, G., Dhruvit, T. (2017). Design and construction of a modified rapid sand filter for treatment of raw water. Journal for Research, 3(3), 9-13.

Sabale, R., Mujawar, S. (2014). Improved rapid sand filter for performance enhancement. International Journal of Science and Research, 3(10), 1031-1033.

Sanyaolu, B. (2010). Comparative performance of a charcoal dual media filter and a conventional rapid sand filter. Journal of Natural Sciences Engineering and Technology, 9(1), 137-146.

Schevchuk, O. (2006). Mathematical description of multistage filtration. Filtration and Separation: the 2nd European Conf., Oct. 12-13, 2006: proceeding. Compiegne (France), 259-265.

Bourdon, T., Estes, Z., Hauter, E. (2012). Design and build a multimedia filtration system for sustainable water supply. Indiana University ‒ Purdue University Fort Wayne, 41.

Adelman, M., Liu, M., Cordero, A., Ayala, J. (2010). Stacked Rapid Sand. Reflection Report. Cornell University, School of Civil & Environmental Engineering. Retrieved from

https://confluence.cornell.edu/display/AGUACLARA/Stacked+Rapid+Sand+Filtration+Summer+2010+Reflection+Report+1

Паболков, В.В. Удосконалення роботи швидких фільтрів водоочисних споруд при підготовці питної води [Текст]: автореф. дис. на здобуття наук. ступеня канд. техн. наук: спец. 05.23.04 «Водопостачання, каналізація» / В.В. Паболков. – Харків: ХНУБА, 2015. – 20 с.

Бугай, Н.Г. Контактная реагентная очистка воды фильтрами из волокнисто-пористого полиэтилена [Текст] / Н.Г. Бугай, А.И. Кривоног, В.В. Кривоног // Прикладна гідромеханіка. – К., 2007. – Т. 9, №1. – С. 8-22.

Зубко, О.Л. Ефективні дренажні системи фільтрів [Текст]: автореф. дис. на здобуття наук. ступеня канд. техн. наук: спец. 05.23.04 «Водопостачання, каналізація» / О.Л. Зубко. – Харків: ХДТУБА, 1999. – 18 с.

Эпоян, С. Повышение эффективности работы фильтровальных сооружений при применении дренажных систем из пористых полимерных материалов [Текст]/ С. Эпоян, А. Карагяур, В. Волков, В. Яркин // MOTROL. – Commission of motorization and energetic in agriculture. – Lublin-Rzeszow, 2016. – Vol. 18, № 6. – 102-109.

Епоян, С.М. Про можливість застосування дренажних систем швидких фільтрів для доочищення [Текст]/ С.М. Епоян, А.С. Карагяур, В.М. Волков // Проблеми водопостачання, водовідведення та гідравліки: наук.-техн. зб. – К.: КНУБА. – 2016. – Вип. 27 – С. 121-129.

Жужиков, В.А. Фильтрование. Теория и практика разделения суспензий [Текст]/ В.А. Жужиков. – [4-е изд., перераб. и доп.]. – М.: Химия, 1980. – 400 с.

Шлихтинг, Г. Теория пограничного слоя [Текст]/ Г. Шлихтинг; пер. с нем. Г.А. Вольперт; ред. пер. с нем. Л.Г. Лойцянский. – М.: Наука, 1974. – 711 с.

References

Zhurba, M., Sokolov, L., Govorova, G. (2010). Water supply. Designing systems and structures: 3 tons. Textbook. allowance. 3rd ed., Ext. and rev. T.2. Purification and conditioning of natural waters. Moscow: Publishing house of the Association of Construction Universities, 552.

Kulikov, N., Naimanov, A., Omelchenko, N., Chernyshev, V. (2009). Theoretical basis of water purification. Donetsk: Publishing house "Nouvelage" (Donetsk branch), 298.

Tugay, A., Orlov, V. (2009). Water supply: textbook. Kyiv: Knowledge, 735.

Grabovsky, P., Larkina, G., Progulny, V. (2012). Washing of water purification filters. Odessa: Optimum, 240.

Al-Rawi, S. (2009). Introducing sand filter capping for turbidity removal for potable water treatment plants of Mosul/Iraq. International Journal of Water Resources and Environmental Engineering, 1 (1), 11-19.

Odira, P., Ndiba, P. (2007). Performance of crushed coconut shell dual media filter. Journal of Civil Engineering Research and Practice, 4, 2. Retrieved from

https://www.ajol.info/index.php/jcerp/article/view/29176

Gawade, S., Misal S. (2016). Analysis of PVC rapid sand filter. Imperial Journal of Interdisciplinary Research (IJIR), 2(9), 1370-1373.

Mohanty, B. Keval, P., Beran, G., Dhruvit, T. (2017). Design and construction of a modified rapid sand filter for treatment of raw water. Journal for Research, 3(3), 9-13.

Sabale, R., Mujawar, S. (2014). Improved rapid sand filter for performance enhancement. International Journal of Science and Research, 3(10), 1031-1033.

Sanyaolu, B. (2010). Comparative performance of a charcoal dual media filter and a conventional rapid sand filter. Journal of Natural Sciences Engineering and Technology, 9(1), 137-146.

Schevchuk, O. (2006). Mathematical description of multistage filtration. Filtration and Separation: the 2nd European Conf., Oct. 12-13, 2006: proceeding. Compiegne (France), 259-265.

Bourdon, T., Estes, Z., Hauter, E. (2012). Design and build a multimedia filtration system for sustainable water supply. Indiana University ‒ Purdue University Fort Wayne, 41.

Adelman, M., Liu, M., Cordero, A., Ayala, J. (2010). Stacked Rapid Sand. Reflection Report. Cornell University, School of Civil & Environmental Engineering. Retrieved from

https://confluence.cornell.edu/display/AGUACLARA/Stacked+Rapid+Sand+Filtration+Summer+2010+Reflection+Report+1

Pabolkov, V. (2015). Improvement of the work of fast filters of water treatment facilities during preparation of drinking water: author's abstract. dis. for obtaining sciences. Degree Candidate tech Sciences: special 05.23.04 – Water supply, sewerage. Kharkiv: KhNUСA, 20.

Bugay, N., Krivonog, A., Krivonog, V. (2007). Contact reagent purification of water by filters of fibrous-porous polyethylene. Applied hydromechanics. Kyiv, 9(1), 8-22.

Zubko, O. (1999). Efficient drainage systems of filters: author's abstract. dis. for obtaining sciences. Degree Candidate tech Sciences: special 05.23.04 - Water supply, sewerage. Kharkiv: KhSTUCA, 18.

Epoyan, S, Karahiaur, A, Volkov, V, Yarkin, V (2016). Improving the efficiency of filter structures using drainage systems made of porous polymer materials. MOTROL. Commission of motorization and energetics in agriculture. Lublin-Rzeszow, 18(6), 102-109.

Epoyan, S., Karahiaur, A., Volkov, V. (2016). About the possibility of application of drainage systems of fast filters for extra cleaning. Problems of water supply, drainage and hydraulics: scientific and technical collection. Kyiv: KNUCA, 27, 121-129.

Zhuzhikov, V. (1980). Filtration. Theory and practice of separation of suspensions 4-th ed., Ext. and rev. Moscow: Chemistry, 400.

Schlichting, G (1974). The theory of the boundary layer. Moscow: Nauka, 711.

Published

2018-03-30

How to Cite

, , , & . (2018). USING POLYMERIC SHELLS OF THE DRAINAGE SYSTEMS OF RAPID FILTERS FOR TERTIARY TREATMENT. Municipal Economy of Cities, (139), 135–142. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5118

Most read articles by the same author(s)