EXPERIMENTAL GROUNDS FOR THE RATIONAL VALUES OF THE VEHICLES SERVICE TIME AT URBAN TRANSFER NODES

Authors

Abstract

In the focus of modern research, there are tasks related to ensuring sustainable urban mobility, among which the creation of integrated passenger transport systems occupies a significant place. However, the imperfection of technical and technological forms of interaction leads to a significant waiting time for the transfer of passengers and the emergence of unproductive downtime, increasing of the presence of vehicles at transfer nodes, while increasing the environment pollution and reducing the safety performance of transport subprocesses.

Reduction of the passenger waiting time at a transfer node is achieved when creating a synchronized timetable of urban passenger transport vehicles, while the coordinated arrival of vehicles at stopping points avoids their bunching. In order to implement an effective transfer process, in addition to shifting the departure time to synchronize motion, an additional time is added to the schedule, which artificially extends the service time at the stopping point.

The article presents the approach to determining the vehicles service time at transfer nodes, which provides the minimum total cost of urban passenger transport and passengers. According to the results of the simulation experiment regression models were developed to determine the transfer waiting time of passengers.

The results of experimental studies can determine the functional relationship between the criterion of efficiency and the vehicles service time at stopping points at transfer points. The rational service time corresponds to the value at which the criterion reaches its extremum (minimum).

Keywords: transfer node, service time, waiting time, simulation experiment, regression.

Author Biography

, Kharkiv National Automobile and Highway University, Ukraine

аспірант кафедри транспортних технологій

References

Література

Vdovychenko, V. (2017). Analysis of the formation of fluctuations of service time of vehicles in transport-transfer stations of urban passenger transport. Technology audit and production reserves, (4/2(36)), 37-43.

Журба, О.О. Формування моделі узгодження графіку підводу рухомого складу різних видів транспорту до залізничного вокзалу [Текст] / О.О. Журба // ДонІЗТ : зб. наук. праць. − 2010. − Вип. 22. − С. 62-68.

Schröder, M. & Solchenbach, I. (2006) Optimization of Transfer Quality in Regional Public Transit: technical Report 84. Fraunhofer: ITWM, 29.

Cevallos, F. & Zhao, F. (2006) Minimizing transfer times in public transit network with genetic algorithm, Transportation Research Record: Journal of the Transportation Research Board, 1971, 74-79.

Wu, Y., Yang, H., Tang, J. & Yud, Y. (2016) Multi-objective re-synchronizing of bus timetable: Model, complexity and solution. Transportation Research Part C: Emerging Technologies, 67, 149–168.

Lee, K.T., & Schonfeld, P.M, (1991) Optimal slack time for timed transferred at transit terminal, J. Adv. Transp., 25/3, 281–308.

Ting, C., & Schonfeld, P. (2005) Schedule coordination in a multiple hub transit network, Journal of Urban Planning and Development, 131/2, 112–124.

Nesheli, M. M., & Ceder, A. A. (2015). Improved reliability of public transportation using real-time transfer synchronization. Transportation Research Part C: Emerging Technologies, 60, 525-539.

Wu, W., Liu, R., & Jin, W. (2016) Designing robust schedule coordination scheme for transit networks with safety control margins, Transportation Research Part B: Methodological, 93A, 495–519.

Вдовиченко, В.О. Формування математичної моделі функціонування транспортно-пересадочних вузлів міського пасажирського транспорту [Текст] /

В.О. Вдовиченко, Г.О. Самчук // Вісник НТУ «ХПІ». Серія: Механіко - технологічні системи та комплекси. – Харків: НТУ «ХПІ». − 2016. − № 17 (1189). – С. 56-61.

Vdovychenko, V., Driuk, O., & Samchuk, G. (2017) Method of traffic optimization of urban passenger transport at transfer nodes, Eastern-European Journal of Enterprise Technologies. 3/3 (87), 47-53. https://doi.org/10.15587/1729-4061.2017.103333

References

Vdovychenko, V. (2017). Analysis of the formation of fluctuations of service time of vehicles in transport-transfer stations of urban passenger transport. Technology audit and production reserves, (4/2(36)), 37-43.

Zhurba, O.O. (2010). Formuvannia modeli uzghodzhennia hrafiku pidvodu rukhomoho skladu riznykh vydiv transportu do zaliznychnoho vokzalu, DonIZT: zb. nauk. prats, 22, 62-68.

Schröder, M. & Solchenbach, I. (2006) Optimization of Transfer Quality in Regional Public Transit: technical Report 84. Fraunhofer: ITWM, 29.

Cevallos, F. & Zhao, F. (2006) Minimizing transfer times in public transit network with genetic algorithm, Transportation Research Record: Journal of the Transportation Research Board, 1971, 74-79.

Wu, Y., Yang, H., Tang, J. & Yud, Y. (2016) Multi-objective re-synchronizing of bus timetable: Model, complexity and solution. Transportation Research Part C: Emerging Technologies, 67, 149–168.

Lee, K.T., & Schonfeld, P.M, (1991) Optimal slack time for timed transferred at transit terminal, J. Adv. Transp., 25/3, 281–308.

Ting, C., & Schonfeld, P. (2005) Schedule coordination in a multiple hub transit network, Journal of Urban Planning and Development, 131/2, 112–124.

Nesheli, M. M., & Ceder, A. A. (2015). Improved reliability of public transportation using real-time transfer synchronization. Transportation Research Part C: Emerging Technologies, 60, 525-539.

Wu, W., Liu, R., & Jin, W. (2016) Designing robust schedule coordination scheme for transit networks with safety control margins, Transportation Research Part B: Methodological, 93A, 495–519.

Vdovychenko, V. O., & Samchuk, G. O. (2016) Development of a mathematical model of public transport interchanges functioning, Bulletin of NTU «KhPI». Series: Mechanical-technological systems and complexes, 17 (1189), 56–61.

Vdovychenko, V., Driuk, O., & Samchuk, G. (2017) Method of traffic optimization of urban passenger transport at transfer nodes, Eastern-European Journal of Enterprise Technologies. 3/3 (87), 47-53. https://doi.org/10.15587/1729-4061.2017.103333

Published

2018-03-30

How to Cite

(2018). EXPERIMENTAL GROUNDS FOR THE RATIONAL VALUES OF THE VEHICLES SERVICE TIME AT URBAN TRANSFER NODES. Municipal Economy of Cities, (139), 26–32. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5096