FUNCTIONAL DESCRIPTION OF THE ZONING OF LOCAL TERRITORIES OF THE GLOBE BY QUANTITY AND DESTRUCTIVE ENERGY OF TECTONIC EXTREME ORIGIN SITUATIONS

Array

Authors

  • V. Tiutiunyk National University of Civil Defense of Ukraine
  • L. Chernogor V.N. Karazin Kharkiv National University
  • V. Kalugin National University of Civil Defense of Ukraine
  • T. Agazade National University of Civil Defense of Ukraine

Keywords:

emergency, seismic activity, seismic hazard, emergency monitoring of tectonic origin, discriminant analysis, canonical analysis

Abstract

In conditions of uneven distribution of sources of danger across the territory of the state, each territory has its own levels of natural, technogenic, social and military loads, which influence on the composition of forces, tactical and technical characteristics of the means of the functioning geoinformation security system, namely the national security system.

In Ukraine the civil defense system is functioning to ensure the implementation of state policy in the field of civil defense for protection of the population, territories, environment and property from emergencies by preventing such situations, eliminating their consequences and providing assistance to victims in peacetime and during a special period. The system consists of functional and territorial subsystems and is aimed to solving the issues of ensuring the necessary level of security of the state in the conditions of emergency. At the same time, the issues of implementation of the monitoring function and development of effective decisions by all local subsystems, which aimed at prevention and localization of different emergencies, remain completely open to the state.

In this paper in order to further develop the scientific and technical foundations for creating an artificial intelligence system for monitoring emergencies of tectonic origin have been presented the results of a mathematical description of the hierarchical clustering local territories of the globe in terms of the amount and of destructive energy of tectonic origin emergency situations. The results have been obtained by discriminant and canonical multivariate statistical analysis of the Earth's seismic activity in the Sun – Earth – Moon nonlinear energy interaction system. The discriminant and canonical analyzes of the results of hierarchical clustering (zoning) of the local territories of the globe according to the level of seismic activity were carried out using the statistical packages STATISTICA 6.1 and SPSS 2.0. The results obtained in this work are the basis for further comprehensive assessment of the interconnections between the main parameters of the Earth’s movement in the Sun – Earth – Moon system and the main parameters of the tectonic hazard of seismically active local territories of the Earth, aimed at developing the scientific and technical foundations for creating an artificial intelligence system for monitoring emergencies of tectonic origin.

Author Biographies

V. Tiutiunyk, National University of Civil Defense of Ukraine

Doctor of Technical Sciences, Senior Researcher

L. Chernogor, V.N. Karazin Kharkiv National University

Doctor of Physical and Mathematical Sciences, Professor

V. Kalugin, National University of Civil Defense of Ukraine

Doctor of Chemical Sciences, Professor

References

Chernogor L.F. (2012). Fizika i ekologiya katastrof. Khar'kov, Khar'kovskiy natsional'nyy universitet im. V.N. Karazina, 556 p.

Tiutiunyk V.V., Chernogor L.F. & Kalugin V.D. (2011). Systemnyi pidkhid do otsinky nebezpeky zhyttiediialnosti pry terytorialno chasovomu rozpodili enerhii dzherel nadzvychainykh sytuatsii. Trudy “Problemy` nadzvy`chajny`x sy`tuacij”, 14, 171 – 194.

Pervyy Doklad Predsedatelya Mezhdunarodnogo Komiteta po Problemam Global'nykh Izmeneniy Geologicheskoy Sredy „GEOCHANGE”. (2010). Available at: http://www.ru.geochnge-report.org

Barishpolets V.A. (2010). Sistemnyy analiz katastrof, proiskhodyashchikh v mire. Trudy “Radioelektronika. Nanosistemy. Informatsionnye tekhnologii”, Vol. 2, 1-2, 162 – 176.

Nacional`na dopovid` pro stan texnogennoyi ta pry`rodnoyi bezpeky` v Ukrayini. Available at: http://www.dsns.gov.ua/

Kodeks cy`vil`nogo zaxy`stu Ukrayiny` vid 2 zhovtnya 2012 roku No. 5403-VI. (2012). Golos Ukrayiny. 220 (5470)), 4 – 20.

Postanova Kabinetu Ministriv Ukrayiny` vid 9 sichnya 2014 roku No. 11 «Pro zatverdzhennya Polozhennya pro Yedy`nu derzhavnu sy`stemu cy`vil`nogo zaxy`stu». Available at: http://zakon5.rada.gov.ua/laws/show/11-2014-%D0%BF

Kalugin V.D., Tiutiunyk V.V., Chornogor L.F. & Shevchenko R.I. (2013). Rozrobka naukovo-texnichny`x osnov dlya stvorennya sy`stemy` monitory`ngu, poperedzhennya ta likvidaciyi nadzvy`chajny`x sy`tuacij pry`rodnogo ta texnogennogo xarakteru ta zabezpechennya ekologichnoyi bezpeky`. Publishing centre “Xarkivs`ky`j universy`tet Povitryany`x Sy`l im. Ivana Kozheduba”, 9 (116), 204 – 216.

Andronov V.A., Divizinyuk M.M., Kalugin V.D. & Tiutiunyk V.V. (2016). Naukovo-konstruktors`ki osnovy` stvorennya kompleksnoyi sy`stemy` monitory`ngu nadzvy`chajny`x sy`tuacij v Ukrayini. Nacional`ny`j universy`tet cy`vil`nogo zaxy`stu Ukrayiny`, 319 p.

Tiutiunyk V.V., Chernogor L.F., Kalugin V.D. & Agazade T.Kh. (2017). Otsenka vliyaniya energeticheskikh effektov v sisteme Solntse–Zemlya–Luna na uroven' seysmicheskoy aktivnosti territorii Zemnogo shara. Trudy “Sy`stemy` upravlinnya, navigaciyi ta zv'yazku”, 6(46), 238 – 246.

Tiutiunyk V.V., Chernogor L.F., Kalugin V.D. & Agazade T.Kh. (2017). Otsenka dinamicheskikh i energeticheskikh effektov na planete Zemlya i vliyanie ikh na sootnoshenie mezhdu urovnyami seysmicheskoy aktivnosti polushariy Zemnogo shara. Trudy “Naukovy`j visny`k: Cy`vil`ny`j zaxy`st ta pozhezhna bezpeka”, 2(4), 101 – 117.

Tiutiunyk V.V., Chernogor L.F., Kalugin V.D. & Agazade T.Kh. (2018). Otsenka vliyaniya variatsiy skorosti osevogo vrashcheniya Zemli na uroven' seysmicheskoy aktivnosti lokal'nykh territoriy. GEOINFORMATIKA, 3(67), 36 – 48.

Tiutiunyk V.V., Chernogor L.F., Kalugin V.D. & Agazade T.Kh. (2019). Razvitie osnov geoinformatsionnykh sistem monitoringa chrezvychaynykh situatsiy tektonicheskogo proiskhozhdeniya. Pry`kladna radioelektronika, V. 18, 1, 2, 52 – 65.

Vadym Tiutiunyk, Vladimir Kalugin, Olha Pysklakova, Olexandr Yaschenko & Tural Agazade. (2019). Hierarchical clustering of seismic activity local territories Globe. EUREKA: Physics and Engineering, 4, 41 – 53.

Ofitsial'nyy sayt Global'noy Seti Prognozirovaniya Zemletryaseniy. Retrieved from http://seismonet.org/index.htm

Ofitsial'nyy sayt Mezhdunarodnogo konsortsiumu seysmologicheskikh Institutov (IRIS). Retrieved from https://www.iris.edu/hq/

US Geological Survey, National Earthquake Information Center. Retrieved from http://www.earthquake.usgs.gov

Ofitsial'nyy sayt Natsional'nogo tsentra dannykh USA (USNDC, Florida, USA). Retrieved from www.usndcorps.org

Ofitsial'nyy sayt Evropeyskogo sredizemnomorskogo seysmologicheskogo tsentra (EMSC, Parizh, Frantsiya). Retrieved from http://www.kndc.kz/

Ofitsial'nyy sayt Mezhdunarodnogo seysmologicheskogo tsentra (ISC, England). Retrieved from http://www.isc.ac.uk/

Ofitsial'nyy sayt Tsentra izucheniya Zemli Germanii (GFZ, Potsdam, Germany). Retrieved from https://www.gfz-potsdam.de/

Ofitsial'nyy sayt Norvezhskogo seysmologicheskogo tsentra (NORSAR). Retrieved from https://www.norsar.no/

V SNG sozdadut mezhgosudarstvennuyu sistemu kosmicheskogo monitoringa ChS. Retrieved from http://itar-tass.com/nauka/1529312

Sozdanie sistemy kosmicheskogo monitoringa ChS v stranakh SNG obsudyat v Almaty. Retrieved from http://newskaz.ru/politics/20120605/3274666.html

Strany SNG prosledyat za vozniknoveniem ChS cherez kosmos. Retrieved from http://lenta.ru/news/2014/10/24/spacecls

Ofitsial'nyy sayt Tsentra dannykh Geofizicheskoy sluzhby Rossii (GS RAN, Obninsk, Russia). Retrieved from http://eqru.gsras.ru/

Natal’in A. (2001). The Tectonic Evolution of Asia. Cambridge University press. 486-638

Ofitsial'nyy sayt Kazakhstanskogo natsional'nogo tsentra dannykh. Retrieved from http://www.kndc.kz/

Ofitsial'nyy sayt Respublikanskogo Tsentra Seysmologicheskoy Sluzhby pri Natsional'noy Akademii Nauk Azerbaydzhana. Retrieved from http://www.seismology.az/

Internet-sajt Golovnogo centru special`nogo kontrolyu Nacional`nogo Kosmichnogo agentstva Ukrayiny. Retrieved from http://www.nkau.gov.ua/

Zharov V.E., Konov A.S. & Smirnov V.B. (1991). Variatsii parametrov vrashcheniya Zemli i ikh svyaz' s sil'neyshimi zemletryaseniyami mira. Astronomicheskiy zhurnal. V. 68, 1, 187 – 196.

Gor'kavyy N.N., Levitskiy L.S., Taydakova T.A., Trapeznikov Yu.A. & Fridman A.M. (1994). O korrelyatsii grafikov uglovoy skorosti vrashcheniya Zemli i modulya ee vremennoy proizvodnoy s chastotoy zemletryaseniy v zavisimosti ot ikh magnitudy. Fizika Zemli, 10, 33 – 38.

Sidorenkov N.S. (2004). Nestabil'nost' vrashcheniya Zemli. Vestnik RAN, V.74, 8, 701 – 715.

Sidorin A.Ya. (2004). Vliyanie Solntsa na seysmichnost' i seysmicheskiy shum. Seysmicheskie pribory, 40, 71 – 80.

Levin B.V., Sasorova E.V. & Domanskiy A.V. (2013). Svoystva «kriticheskikh shirot», variatsii vrashcheniya i seysmichnost' Zemli. Vestnik DVO RAN, 3, 3 – 8.

Zharov V.E. (1996). Connection of the Earth’s rotation with the atmospheric angular momentum and the strongest earthquakes. Astron. Astrophys. Transactions, 9, 317 – 327.

Wiemer S. & M. Wyss (2002). Mapping spatial variability of the frequency-magnitude distribution of earthquakes: An overview. Advances in Geophysics, 45, 259 – 302.

Atef A.H., Liu K.H., Gao S.S. & Atef A.H. (2009). Apparent weekly and daily earthquake periodicities in the Western United States .Bull. Seismol. Soc. Amer, V.99, N 4, 2273 – 2279.

Sidorenkov N.S. (2008). Fizika nestabil'nostej vrashhenija Zemli. Nauka, Fizmatlit, 384 p.

Klimenko A.V. (2005). Global'nye svoystva seysmicheskoy aktivnosti Zemli i ikh svyaz' s ee vrashcheniem. Disser. … kand. fiz.-mat. nauk. Moskva. Moskovskiy gosu-darstvennyy oblastnoy universitet, 87 p.

Malyshkov Yu.P. & Malyshkov S.Yu. (2009). Periodicheskie variatsii geofizicheskikh poley i seysmichnosti, ikh vozmozhnaya svyaz' s dvizheniem yadra Zemli. Geologiya i geofizika, V.50, no. 2, 152 – 172.

Malyshkov Yu.P., Malyshkov S.Yu. & Shtalin S.G. (2009). Sposob opredeleniya prostranstvennogo polozheniya i parametrov dvizheniya vnutrennego yadra Zemli". Institut monitoringa klimaticheskikh i ekologicheskikh sistem. Patent RF no. 2352961S2, MPK G01V3/00.

Romashov A.N. &T sygankov S.S. (1996). V poiskakh obobshchayushchey geotektonicheskoy kontseptsii. Geotektonika, 4, 3 – 12.

Fridman A.M., Polyachenko E.V. & Nasyrkanov N.R. (2010). O nekotorykh korrelyatsiyakh v seysmodinamike i dvukh komponentakh seysmicheskoy aktivnosti Zemli. Uspekhi fizicheskikh nauk, V.180, 3, 303 – 312.

Rays Dzh. (1982). Mekhanika ochaga zemletryaseniya. Mir, 1982, 217 .

Kasakhara K. (1985). Mekhanika zemletryaseniy. Mir, 264.

Trukhin V.I., Pokazeev K.V. & Kunitsyn V.E. (2005). Obshchaya i ekologicheskaya geofizika. FIZMATLIT, 576.

Gufel'd I.L. (2007). Seysmicheskiy protsess. Fiziko-khimicheskie aspekty. M.O. TsNIIMash, 160.

Bereznyakov A.I. & Nyemecz` K.A. (2010). Fizy`ka Zemli. Khar'kovskiy natsional'nyy universitet im. V.N. Karazina, 268.

Savarenskiy E.F. (1972). Seysmicheskie volny. Nedra, 296.

Malyshkov Yu.P., Dzhumabaev K.B. & Malyshkov S.Yu. (2004). Sposob prognoza zemletryaseniy. Institut monitoringa klimaticheskikh i ekologicheskikh sistem. Patent RF no. 2238575, MPK G01V3/00.

Pshennikov K.V. (1965). Mekhanizm vozniknoveniya aftershokov i neuprugie svoystva zemnoy kory. Nauka, 87.

Gul'el'mi A.V. (2015). Forshoki i aftershoki sil'nykh zemletryaseniy v svete teorii katastrof. Uspekhi fizicheskikh nauk, V. 185, no. 4, 415 – 429.

Levin B.V., Rodkin M.V. & Tikhonov I.N. (2011). Velikoe Yaponskoe zemletryasenie. Priroda, 10, 14 – 22.

Elektromagnitnye predvestniki zemletryaseniy. (1982). Pod red. Sadovskogo M.A. Nauka, 69 .

Remizov L.T. (1991). Registratsiya izmeneniy estestvennogo elektromagnitnogo polya v periody vremeni, predshestvuyushchie zemletryaseniyam. Radiotekhnika i elektronika. V. 36, 6, 1041 – 1080.

Tertyshnikov A.V. (2012). Predvestniki sil'nykh zemletryaseniy v ozonosfere. Geliogeofizicheskie issledovaniya, 2, 54 – 59.

Belyakov A.S., Lavrov V.S., Nikolaev A.V. & Khudzinskiy L.L. (1999). Podzemnyy fonovyy zvuk i ego svyaz' s prilivnymi deformatsiyami. Geliogeofizicheskie issledovaniya, 12, 39 – 46.

Smirnov V.M. & Smirnova E.V. (2008). Issledovanie vozmozhnosti primeneniya sputnikovykh navigatsionnykh sistem dlya monitoringa seysmicheskikh yavleniy. Voprosy elektromekhaniki, 105, 94–104.

Tertyshnikov A.V. & Platonov V.V. (2007). Perspektivy monitoringa seysmicheskikh usloviy iz kosmosa. Elektronnyy zhurnal «ISSLEDOVANO V ROSSII». Retrieved from http://zhurnal.ape.relarn.ru/articles/2007/031.pdf

Zakharenkova I.E., Shagimuratov I.I., Krankovski A. & Lagovskiy A.F. (2006). Ionosfernye anomalii, nablyudaemye v GPS TEC izmereniyakh pered zemletryaseniem v Gretsii 8 yanvarya 2006 g. (M6.8). Elektronnyy zhurnal «ISSLEDOVANO V ROSSII». Retrieved from http://zhurnal.ape.relarn.ru/articles/2006/110.pdf

Chernogor L.F. (2019). Effekty`vnost` mony`tory`nga katastrofy`chesky`x processov kosmy`cheskogo y` zemnogo proy`sxozhdeny`ya. Space science and technology.V. 25, 16, 38 – 47.

Afraimovich E.L., Perevalova N.P., Plotnikov A.V. & Uralov A.M. (2001). The shock-acoustic waves generated by the earthquakes. Annales Geophysicae. V.19, 4, 395 – 409.

Garcia R., Crespon F., Ducic V. & Lognonne P. (2005). Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data. Geophys, 163, 1049 – 1064.

Heki K. & Ping J. (2005). Directivity and apparent velocity of the coseismic traveling ionospheric disturbances observed with a dense GPS array. Earth Planet. Sci. Lett. 236, 845 – 855.

Li Ma, Jianmin Chen, Qifu Chen & Guiping Liu (1995). Features of precursor fields before and after the Datong-Yarg-gao Earthquake swarm. J. Earth. Predict. Res. V. 4, 1. 1 – 30.

Liu J.Y., Chuo Y.J., Shan S.J., Tsai Y.B., Chen Y.I., Pulinets S.A., & Yu S.B. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurement. Annales Geophysicae. 22, 1585 – 1593.

Chernogor L.F. (2019). Geomagnetic Disturbances Accompanying the Great Japanese Earthquake of March 11, 2011. Geomagnetism and Aeronomy. V. 59, 1, 62 – 75.

Chernogor L.F. (2019). Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagnetism and Aeronomy. V. 59, 3, 374–382.

Kim Dzh.O., Myuller Ch.U. & Klekka U.R. (1989). Faktornyy, diskriminantnyy i klasternyy analiz. Finansy i statistika, 215.

Khalafyan A.A. (2007). STATISTICA 6. Statisticheskiy analiz dannykh. OOO «Binom-Press», 512 p.

Published

2020-04-03

How to Cite

Tiutiunyk, V., Chernogor, L., Kalugin, V., & Agazade, T. (2020). FUNCTIONAL DESCRIPTION OF THE ZONING OF LOCAL TERRITORIES OF THE GLOBE BY QUANTITY AND DESTRUCTIVE ENERGY OF TECTONIC EXTREME ORIGIN SITUATIONS: Array. Municipal Economy of Cities, 1(154), 272–287. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5565