• O. Voronkov O.M. Beketov National University of Urban Economy in Kharkiv
  • S. Nesterenko O.M. Beketov National University of Urban Economy in Kharkiv
  • V. Kasyanov O.M. Beketov National University of Urban Economy in Kharkiv




satellite signals, differential measurements, interference, error structure, correlation.


It is known that the results of satellite measurements, which are obtained by the differential method, are usually dependent values and are characterized by the presence of a physical correlation with a close linear relationship. A model of errors of differential measurements is constructed, in which in order to separate the influence of interference on the signal coming to the satellite receiver, two components are identified, one of which is caused by interference from the main sources of error, are tropospheric and ionospheric refraction of navigation signals. individual measurement, in particular additional noise and multipath of satellite observation signals. The influence of the ratio of these components in the structure of measurement errors on the value of the correlation coefficient of signals received by satellite receivers operating in the differential mode is studied. According to the experience of satellite measurements, the share of the first component in the error of two synchronous measurements is more than 97 % of the total measurement error in the absence of additional external interference and multipath, and the correlation coefficient in practice is usually more than 0.999. This is confirmed by the fact that a pair of synchronous measurements are the result of measuring the same quantities, so their dependence is almost functional, it becomes probabilistic due to the influence of additional interference and multipath, which corresponds to the second component. Obviously, the effect of additional interference on the satellite signal path reduces the share of the first component in the measurement error. At the same time there is a decrease in the correlation coefficient. Analysis of the obtained data shows that in particular in the interval where the effect of additional interference, in particular the second component, does not exceed 25%, at 25% exposure the correlation coefficient takes 0.9, at 10% exposure it is 0.99, 3% exposure corresponds to a correlation coefficient of 0.9968. Therefore, the correlation coefficient is very sensitive to the influence of additional interference and multipath in the path of the radio signal, which is expressed by the second component in the error structure. This makes it possible to characterize each series of differential measurements by the presence or absence of multipath and justifies the use of reducing the correlation coefficient when performing coordinate determinations to indicate the presence of multipath on the useful signal of satellites.

Author Biographies

O. Voronkov, O.M. Beketov National University of Urban Economy in Kharkiv

PhD, Associate Professor, Associate Professor of the Department

S. Nesterenko, O.M. Beketov National University of Urban Economy in Kharkiv

PhD, Head of the Department

V. Kasyanov, O.M. Beketov National University of Urban Economy in Kharkiv

PhD, Senior Lecturer of the Department


Okhrimchuk, A.Yu. (2011). Otsiniuvannia tochnosti vyznachennia skladovykh vektoriv zalezhno vid tryvalosti GPS-sposterezhen ta obmezhennia vydymosti neboskhylu. Heodeziia, kartohrafiia i aerofotoznimannia, 75, 17–25. URL: https://science.lpnu.ua/sites/default/files/journal-paper/2017/may/1720/gka75201104.pdf [in Ukrainian]

Yanchuk, O.S. (2010). Poperednie otsiniuvannia vplyvu obmezhenoi vydymosti horyzontu na tochnist GPS-sposterezhen. Visnyk heodezii ta kartohrafii, 4, 3–7. URL: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/vgtk_2010_4_3.pdf [in Ukrainian]

Yanchuk, O., Cherniaha, P., Holubinka, Yu. (2010). Urakhuvannia zakrytosti horyzontu pid chas GPS-sposterezhen dlia zemelno-kadastrovoi inventaryzatsii zemel naselenykh punktiv. Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva, 1(19), 56–61. URL: https://ena.lpnu.ua/handle/ntb/10622 [in Ukrainian]

Pishko, Yu.R. (2015). Aktualizatsiia parametriv metodyky vidnosnykh suputnykovykh sposterezhen dlia stvorennia opornykh heodezychnykh merezh. Dys. kand. tekhn. nauk : 05.24.01; Nats. un-t «Lvivska politekhnika», Lviv. URL: https://lpnu.ua/sites/default/files/2020/dissertation/1622/arefpishko.pdf [in Ukrainian]

Bielov, V.S., Samoliuk, I.A. (2018). Osoblyvosti vyznachennia tochnosti navihatsii v systemi GPS. Materialy XLVII nauk.-tekhn. konf. Vinnytskoho natsionalnoho tekhnichnoho universytetu (NTKP VNTU–2018). Vinnytsia, VNTU. URL: https://conferences.vntu.edu.ua/public/files/1/frtzp_2018_netpub.pdf [in Ukrainian]

Zademleniuk, A.V. (2010). Doslidzhennia vplyvu pokhybok na suputnykovi vymiriuvannia v RTK rezhymi. Heodeziia, kartohrafiia i aerofotoznimannia, 73, 25–33. URL: https://science.lpnu.ua/sites/default/files/journal-paper/2017/may/1851/gka73201006.pdf [in Ukrainian]

Zhelanov, A.A. (2012). Uchet sostavlyayushchikh pogreshnostey i korrelyatsionnyy analiz pri obrabotke differentsialnykh GNSS-izmereniy, Radiotekhnika, 169, 269–276. URL: https://openarchive.nure.ua/bitstream/document/13745/1/RT_169_269_276.pdf [in Russian]

Yakhman, V.V. (2012). O matematicheskoy i fizicheskoy korrelyatsii sputnikovykh izmereniy i puti oslableniya eye vliyaniya. Interekspo Geo, 1, 185–189. URL: https://cyberleninka.ru/article/n/o-matematiches-koy-i-fizicheskoy-korrelyatsii-sputnikovyh-izmereniy-i-puti-oslableniya-ee-vliyaniya [in Russian]

El-Rabbany, A.E-S. (1994). The effect of physical correlations on the ambiguity resolution and accuracy estimation in GPS differential positioning. Dept. of Geodesy & Geomatic Eng., University of New Brunswick, Canada, Tech. rept. No 170, 161. URL: https://unbscholar.lib.unb.ca/islandora/object/unbscholar%3A8565

Hryshchenkov, E.V., Prisyazhnyuk, A.P. (2007). O vliyanii korrelyatsii na rezultaty obrabotki sputnikovykh GPS-izmereniy. Vestnik Polotskogo gosudarstvennogo universiteta, Seriya F, 6, 132–135. URL: https://core.ac.uk/download/pdf/326321709.pdf [in Russian]

Shults, R., Tereshchuk, O., Annenkov, A., Nystoriak, I. (2014). Praktychni doslidzhennia tochnosti vyznachennia koordynat za suputnykovymy tekhnolohiiamy v rezhymi realnoho chasu. Inzhenerna heodeziia, 61, 59–77. URL: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Ig_2014_61_10 [in Ukrainian]

Antonovich, K. (2005). Ispolzovaniye sputnikovykh radiona-vigatsionnykh sistem v geodezii. V 2 t. T. 1. Monogr. Moscow, FGUP «Kartgeotsentr». URL: http://gps-rs.scg.ulaval.ca/pdf/%D0%90%D0%BD%D1%82%D0%BE%D0%BD%D0%BE%D0%B2%D0%B8%D1%87%20%D0%9A.%D0%9C.%20Russe%202006%20RS1991%20-%20extrait.pdf [in Russian]

Brown, A. (1989). Extended differential GPS. Navigation, 36 (3), 265–285. URL: https://www.ion.org/publications/abstract.cfm?articleID=100290

Beutler, G., Bauersima, I., Botton, S., et al. (1989). Accuracy and biases in the geodetic application of the Global Positioning System. Manuscripta geodaetica, 14, 28–35. URL: https://www.semanticscholar.org/paper/Accuracy-and-biases-in-the-geodetic-application-of-Beutler-Bauersima/7eba2eed406041dbd75afd419455067e69de7bb

Teunissen, P.J.G., Bock, Y., Beutler, G., et al. (1998). GPS for geodesy. Berlin, Springer. URL: https://catalogue.nla.gov.au/Record/2911964

Weill, L.R. (2003). Multipath mitigation. How good can it get with new signals? GPS World, 14 (6), 106–113. URL: https://www.semanticscholar.org/paper/How-Good-Can-It-Get-with-New-Signals-Multipath-Weill/84bcb4c4923d22f0ab827bf84f6b07439aeb8392

Rizos, C. (1999). Principles and Practice of GPS Surveying. URL: http://www.gmat.unsw.edu.au/snap/gps/gps_survey/

Bolshakov, V., Haidaev, P. (1977). Teoriya matematicheskoy obrabotki geodezicheskikh izmereniy. Uchebnyk. 2-e yzd. Moscow, Nedra. [in Russian]



How to Cite

Voronkov О., Nesterenko С., & Kasyanov В. (2022). FEATURES OF EVALUATION OF ACCURACY OF GEODESIC GPS MEASUREMENTS. Municipal Economy of Cities, 3(170), 200–208. https://doi.org/10.33042/2522-1809-2022-3-170-200-208

Most read articles by the same author(s)