THERMODYNAMIC ANALYSIS OF THE COMBUSTION PROCESS IN A STEAM WATER-TUBE BOILERS

Authors

  • И. А. Редько O.M. Beketov National University of Urban Economy in Kharkiv
  • А. А. Редько Kharkiv National University of Construction and Architecture
  • А. В. Давиденко Kharkiv National University of Construction and Architecture

Abstract

Increase efficiency of operation boilers and energy-saving solution to problems with the fuel gas combustion is possible by mathematical modeling workflows in the furnaces of boiler units .Results of the analysis of gaseous fuel combustion processes in the furnace water tube boiler type DKVr are presented. The thermodynamic parameters of methane combustion reaction - a change of enthalpy and entropy in different conditions of cooling of the reaction products. Made exergy analysis of work processes in the furnace of the boiler. Increasing the efficiency of operation of boiler units and solving energy saving problems when burning gaseous fuels is possible by mathematical modeling of work processes in the furnaces of boiler units Computer modeling and the use of numerical methods for studying the processes of gas combustion, aerodynamic and heat exchange processes is efficient and less expensive.

With the intensification of heat transfer in the furnace of the boiler by placing a secondary cylindrical radiator due to the increase in the density of the radiative heat flux, the energy losses increase and amount to 2086 kW, but the exergy of the combustion product stream decreases to 7932 kW, so the exergy efficiency rises to 60.1%.

Keywords: combustion reaction, combustion processes, enthalpy, entropy, exergy, exergy efficiency.

Author Biographies

И. А. Редько, O.M. Beketov National University of Urban Economy in Kharkiv

кандидат технических наук, доцент, доцент кафедры Эксплуатации газовых и тепловых систем

А. А. Редько, Kharkiv National University of Construction and Architecture

доктор технических наук, профессор, профессор кафедры ТГВ и ТВЕР

А. В. Давиденко, Kharkiv National University of Construction and Architecture

аспирант кафедры ТГВ и ТВЕР

References

Литература

Басок Б.И., Демченко В.Г., Мартыненко М.П. Численное моделирование процессов аэродинамики в топке водогрейного котла с вторичными излучателями // Пром. Теплотехника. - 2006. - №1.-с.17-22.

Герман М.Л., Бородуля. А., Ноготов Е.Ф., Пальченок Г.И. Инженерный метод расчета температурного режима жаротрубного котла с тупиковой топкой // Тепломассообмен ММФ – 2000: тр. IV Минского международного форума. – Мн. 2000. т.2. – с.21-30.

Хаустов С.А., Заворин А.С., Фисенко Р.Н. Численное исследование процессов в жаротрубной топке с реверсивным факелом // Изд. Томского политехнического университета. – 2013. – т.322. - №4. – с.43-47.

Редько А.О., Давіденко А.В., Павловський С.В. та інші. Моделювання процесів теплообміну в топках водотрубних котлів ДКВР (ДЕ) – 10/14//Вісник національного університету “Львівська політехніка“. №844. – 2016. – с.180-188.

Чечеткин А.В., Занемонец Н.А. Теплотехника. – М. Высшая школа. – 1986. – с.344.

Баскаков А.П. Теплотехника. – М.: Энергоатомиздат. – 1991. – с.224.

Bejan A. Advanced Engineering Thermodynamics. – 3 rd.ed. – 2006.

Гохштейн Д.П. Энтропийный метод расчета энергетических потерь. – М.: Госэнергоиздат, 1963. – с.112.

Бродянский В.М., Фратшер В., Михалек К. Эксергетический метод и его приложения. – М.: Энергоатомиздат, 1968. – с.288.

Шаргут Я., Петела Р. Эксергия. – М.: Энергия, 1968. – с.279.

Степанов В.С. Химическая энергия и эксергия веществ. – Новосибирск, 1990. – с.163.

Вукалович М.П. Термодинамические свойства воды и водяного пара. – М.: Машгиз, 1955. – с.93.

References

Basok, B.I., Demchenko V.G., & Martynenko, M.P. (2006). Numerical modeling of aerodynamic processes in the furnace of the boiler with a secondary emitter. Industrial heating engineering, 1, 17-22.

Herman, M.L., Borodulya, V.A., Nogotov, E.F., & Palchenok, G.I. (2000). Engineering calculation method of temperature fire-tube boilers with a combustion chamber deadlock. Proceedings of IV Minsk International forum, Minsk, 2, 21-30.

Khaustov, S.A., Zavorin, A.S., Fissenko, R.N. (2013). "Numerical study of processes in the fire tube furnace with reversible flame", Proceedings of the Tomsk Polytechnic University, Vol.322, 4, 43-47.

Red'ko A.O., Davіdenko A.V., Pavlovsky S.V. & Kostyuk V.E. (2016). Modeling of heat transfer in furnaces water tube boilers DKVR (DE)-10/14. News NU "Lviv polіtehnіka". Series: Theory and practice of construction, Lviv, 844, 180-187.

Chechetkin A.V., & Zanemonec N.A. (1986). Heat engineering. M.: High school, 344.

Baskakov A.P. Heat engineering. (1991). M.: Energoatomisdat, 224.

Bejan A. (2006). Advanced Engineering Thermodynamics. Wiley:3-rd.ed, 920.

Gokhshtein D.P. (1963). Entropy method for calculating the energy losses. M.: Gosenergoizdat, 122.

Brodyanskiy V.M., Fratsher V., & Mikhalek K. (1968). Exergic method and its application. Energoatomisdat, 288.

Shargut Ya., & Petela R. (1968). Exergy. M.: Energy, 279.

Stepanov V.S. (1990). Chemical energy and exergy substances. Novosibirsk, 163.

Vukalovich M.P. (1955). Thermodynamic properties of water and steam. M.:Mashgiz, 93.

Published

2017-05-26

How to Cite

, , & . (2017). THERMODYNAMIC ANALYSIS OF THE COMBUSTION PROCESS IN A STEAM WATER-TUBE BOILERS. Municipal Economy of Cities, (134), 37–40. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/4993