THE CREEP AND DURABILITY OF REINFORCED CONCRETE STRUCTURAL ELEMENTS

Authors

  • А. А. Чупрынин O.M. Beketov National University of Urban Economy in Kharkov
  • Н. В. Середа O.M. Beketov National University of Urban Economy in Kharkov

Abstract

One of the basic problems, which is solved on the stage design of elements of building structures design, is the analysis of stress-strain state as well as determining of lifetime. The paper is devoted to the simulation of nonlinear creep of concrete structural elements by different actions. High priority of the research theme is justified, the aim and goals are formulated. The mathematical problem statement of creep of concrete structural elements is presented. The creep problems of thin-walled structural members, which are deformities under the action of different actions varying load were solved by use of developed software. Presents a calculation example of reinforced concrete cylindrical panels. The recommendation for the rational shape design. The conclusions about the adequacy of the analysis of the reliability and durability of reinforced concrete structures.

Keywords: creep, long-term strength, reinforced construction, cylindrical panel, finite element method.

Author Biographies

А. А. Чупрынин, O.M. Beketov National University of Urban Economy in Kharkov

кандидат технических наук, доцент

Н. В. Середа, O.M. Beketov National University of Urban Economy in Kharkov

кандидат технических наук, доцент

References

Литература

Lemaitre, J. & Chaboche, J.-L. (2000). Mechanics of solid materials. Cambridge University Press, 556.

Xinhua, X. & Xingguo, Y. (2014). A damage model for concrete. International Journal of Damage Mechanics 2014, Vol. 23(2), 155–177.

Ахвердов, И. Н. Основы физики бетона [Текст] / И. Н. Ахвердов. – М. : Стройиздат, 1981. – 464 с.

Babut, R. (1983). Load capacity and deformability of structures subjected to bending made of concrete with dispersed steel Fibers (in Polish). In: Mechanics of concrete-like composites. Ossolineum, Wroclaw, 71-145.

Basista, M. (1993). On micromechanical modeling of deformation of compact rock in compression. Eng Transactions 41, 395-417.

Shpachuk, V. P. (2016). Effect of mutually amplifying action two coordinate shock loading in problems of dynamics of knots of machines. Scientific Bulletin of National Mining University. Scientific and technical journal. No.6 (156), 89-94.

Берг, О. Я. Физические основы теории прочности бетона и железобетона [Текст] / О. Я. Берг. - М. : Госстройиздат, 1961. – 96 с.

Качанов, Л. М. Теория ползучести [Текст] / Л. М. Качанов. М.: Физматгиз, 1960. 455 с.

Работнов, Ю.Н. Ползучесть элементов конструкций [Текст] / Ю. Н. Работнов. М. : Наука, 1966. 752 с.

Шмуклер, В. С. Новый метод натурных испытаний [Текст] / В. С. Шмуклер А. А. Чупрынин, Рамин Аббаси Хафшджани. // Бетон и железобетон в Украине. – 2010. №5. – С. 13-24.

Зенкевич, О. Метод конечных элементов в технике [Текст] : пер. с англ. - М. : Мир, 1975. – 238 с.

Чупрынин, А. А. Долговечность железобетонных элементов конструкций [Текст] / А.А. Чупрынин // Комунальне господарство міст. Серія: Технічні науки та архітектура. – Харків : ХНУМГ ім. О. М. Бекетова, 2016. – № 128. – С. 5-9.

Ильюшин, А. А. Пластичность [Текст] / А. А. Ильюшин - М. : АнСССР, 1963. - 424 с.

Prandtl, L. (1924). Spannungsverteilung in Plastichen Korpern. Proc. of 1 st Int. Congr. of Appl. Mech., 43-54.

А. с. 64661 від 24.03.2016 Україна, Комп’ютерна програма “Shell Creep Calculations (“SCC v 4.8”)” [Текст]. / Бреславський Д. В., Морачковський О. К., Татарінова О. А., Чупринін О. О., Золотько Є. В.; заявл. 02.02.16 № 65156. – 2 с.

References

Lemaitre, J. & Chaboche, J.-L. (2000). Mechanics of solid materials. Cambridge University Press, 556 p.

Xinhua, X. & Xingguo, Y. (2014). A damage model for concrete. International Journal of Damage Mechanics 2014, Vol. 23(2), 155–177.

Ahveradov, I. N. (1981). Fundamentals of physics concrete. Moscow, Russia: Stroyizdat, 464.

Babut, R. (1983). Load capacity and deformability of structures subjected to bending made of concrete with dispersed steel Fibers (in Polish). In: Mechanics of concrete-like composites. Ossolineum, Wroclaw, 71-145.

Basista, M. (1993). On micromechanical modeling of deformation of compact rock in compression. Eng Transactions 41, 395-417.

Shpachuk, V. P. (2016). Effect of mutually amplifying action two coordinate shock loading in problems of dynamics of knots of machines. Scientific Bulletin of National Mining University. Scientific and technical journal. No.6 (156), 89-94.

Berg, О.Y. (1961). Physical foundations of the strength theory of concrete and reinforced concrete. Moscow, Russia: Gosstroyizdat, 96.

Kachanov, L. M. (1960). The theory of creep. Moscow, Russia: Phizmatgiz, 455.

Rabotnov, Y. N. (1966). The creep of structural elements. Moscow, Russia: Science, 752.

Shmukler, V. S., Chuprynin, A. A. & Abbasi, R. H. (2010). New method of full-scale tests. Concrete and reinforced concrete in Ukraine: №5, 13-24.

Zenkevitch, O. (1975). Finite element method in engineering. Moscow, Russia: Mir, 238.

Chuprynin, A. (2016).The durability of reinforced concrete structural elements / Utilities cities. Series: Technical Sciences and architecture. Kharkiv, Ukraine:128, 5-9.

Ilyushin, А. А. (1963). Plasticity. Moscow, Russia: AnUSSR, 424

Prandtl, L. (1924). Spannungsverteilung in Plastichen Korpern. Proc. of 1 st Int. Congr. of Appl. Mech., 43-54.

The certificate of registration of copyright in a work № 64661. A computer program “Shell Creep Calculations (“SCC v 4.8”)”(2016). Breslavsky D., Morachkovski O., Tatarinova O., Chuprynin A., Zolotko Ye., Ukraine, 2.

Published

2017-07-04

How to Cite

, & . (2017). THE CREEP AND DURABILITY OF REINFORCED CONCRETE STRUCTURAL ELEMENTS. Municipal Economy of Cities, (135), 2–6. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5016

Most read articles by the same author(s)

1 2 > >>