FORMATION OF THE GROUPS OF TYPICAL DAILY WATER CONSUMPTION SCHEDULES FROM THE WATER SUPPLY NETWORK BY K-MEDIUM METHOD

Authors

Abstract

The analysis issues of the actual regime of water consumption in public water supply systems as the initial stage of planning the water supply regime have been discussed in the article. The purpose of the research is forming principles of taking into consideration the influence of seasonal and social factors. A daily water consumption graph from the water supply network is used as a characteristic of water consumption. Searches for similar daily water consumption graphs have been performed to detect regularities in water consumption. The absolute characteristics of the water supply regime and the classic indicators of daily graphs unevenness have been used to describe the graph. These signs have been used to take into consideration the influence of seasonal factors. Morphometric indicators have been used to describe the form of the graph. These features have been used to take into consideration the influence of social factors.  With the help of cluster analysis, the classification of daily water consumption graphs has been accomplished and groups of similar schedules have been formed. The correctness of the clustering and the reliability of the selected clusters have been checked. To do this, the dispersion analysis procedure have been used. Its results point out to the validity of the results of classification, the homogeneity of the classification features of one cluster objects, the significance of their contribution to the distribution of objects into groups. It has been established that the most significant variable for the season influence is the volume of daily water consumption, and for the influence of social factors is the lengthening. The constructed clusters reflect the influence of the seasons of the year and changes in the life rhythm of the population during the working day and the weekends. The obtained results are the basis for planning the energy efficient mode of water supply depending on the season of the year and the day of the week.

Keywords: public water supply system, water consumption schedule, monitoring, cluster analysis.

Author Biography

, National University of Water and Environmental Engineering

асистент

References

Література

Романчук, С.М. Алгоритмы управления технологическими режимами водоснабжения городов [Текст] / С.М. Романчук // Вісник Донецького національного ун-ту. Серія А: Природничі науки. - 2014. - № 1. - С. 103-110.

Євтушенко, А.О. Визначення оптимального складу насосної станції системи комунального водопостачання [Текст] / А.О. Євтушенко, В.Г. Неня, М.І. Сотник, С.О. Хованський // Вісник КДПУ ім. М. Остроградського. – 2008. - Вип. 4/2008 (51), Ч. 1. - С. 158-162.

Шушкевич, Е.В. Эффективное управление системой подачи и распределения воды Московского мегаполиса [Текст] / Е.В. Шушкевич // Водоснабжение и санитарная техника. - 2011. - № 1. - С. 24-30.

Розен, В.П. Формування множини характеристик фактичного режиму водоспоживання в системах комунального водопостачання [Текст] / В.П. Розен, Н.В. Давиденко // Енергетика: економіка, технології, екологія. - 2015. - № 3 (41). - С. 85-92.

Розен, В.П. Процедура побудови базового рівня електроспоживання об’єктів водопостачання з урахуванням впливу зовнішніх чинників [Текст] / В.П. Розен, Л.В. Давиденко, Н.В. Давиденко // Енергетика: економіка, технології, екологія. - 2017. - №3 (49). - С. 31-37.

Пістунов, І. М. Кластерний аналіз в економіці [Текст] / І. М. Пістунов, О.П. Антонюк. – Дніпропетровськ: Національний гірничий університет, 2008.– 84 с.

Aggarwal, N., Aggarwal, K. (2012) An Improved K-means Clustering Algorithm for Data Mining. Lambert Academic Publishing, 72.

Hastie, T., Tibshirani, R., Friedman, J. (2003) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 764.

Pavlinov, І. Ya. (2001) Geometric morphometrics, a new analytical approach to comparison of digitized images. Information technologies in biodiversity research. St. Petersburg, 41-90.

Янковой, А.Г. Многомерный анализ в системе STATISTICA [Текст] / А.Г. Янковой. - Одесса: Оптимум, 2001. Вып.1. – 216 с.

References

Romanchuk, S.M. (2014) Algorithms for managing technological regimes of water supply of cities. Bulletin of the Donetsk National University. Series A: Natural Sciences, 1, 103-110.

Evtushenko, A.O., Nenya, V.G., Sotnik, M.I., Khovansky, S.O. (2008) Determination of the optimal composition of the pumping station of the municipal water supply system. Bulletin of the KDPU them. M. Ostrogradsky, 4/2008 (51), 1, 158-162.

Shushkevich, E.V. (2011) Effective management of the water supply and distribution system of the Moscow metropolis. Water supply and sanitary engineering, 1, 24-30.

Rosen, V.P., Davydenko, N.V. Formation of the set of characteristics of the actual regime of water consumption in municipal water supply systems. Energy: Economics, Technology, Ecology, 3 (41), 85-92.

Rosen, V.P., Davуdenko, L.V., Davydenko, N.V. (2017) Procedure for building the basic level of electricity consumption of water supply facilities taking into account the influence of external factors. Energy: Economics, Technology, Ecology, 3 (49), 31-37.

Pistunov, I.M., Antonyuk, O.P. (2008) Cluster analysis in economics. Dnipropetrovsk: National Mining University, 84.

Aggarwal, N., Aggarwal, K. (2012) An Improved K-means Clustering Algorithm for Data Mining. Lambert Academic Publishing, 72.

Hastie, T., Tibshirani, R., Friedman, J. (2003) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 764.

Pavlinov, І. Ya. (2001) Geometric morphometrics, a new analytical approach to comparison of digitized images. Information technologies in biodiversity research. St. Petersburg, 41-90.

Yankovoy, A.G. (2011) Multidimensional analysis in the system STATISTICA. Odessa: Optimum, 1, 216.

Published

2018-07-27

How to Cite

(2018). FORMATION OF THE GROUPS OF TYPICAL DAILY WATER CONSUMPTION SCHEDULES FROM THE WATER SUPPLY NETWORK BY K-MEDIUM METHOD. Municipal Economy of Cities, (142), 8–13. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5174