HEAT AND ELECTRIC MATHEMATICAL MODEL FOR ASYNCHRONOUS ELECTRIC MOTORS

Keywords: asynchronous electric motor, thermal processes, diagnostics, thermal control, mathematical model.

Abstract

This paper presents the modeling and testing of thermal, electrical and mechanical properties, models of three-phase asynchronous motor (TIM). The relationships between losses and temperature changes at TIM are considered, which makes simulation of motor operation predictable. In determining the loss at the TIM equivalent electric circuit in an arbitrary, a reference system is used, which combines the traditional model with more conventional modeling and takes into account losses in the stator iron. Thermal study of the engine is performed using an equivalent thermal circuit formed by thermal capacitances and thermal conductivities, which are separately considered for the stator and rotor. Losses calculated using electrical and mechanical modeling are input parameters for the thermal model.

Given the current growing cost of electrical energy and its limited availability, energy efficiency optimization has been the subject of intense research.

The greatest amount of energy in electric transport absorbs electric motors. This consumption is from 65% of electricity used in industry.

One way to maximize the effectiveness of TIMS can be done by improving existing technologies. In the development of control systems for the TIM drive, mathematical models are used, which include the simulation of electrical and mechanical parts in TIM.

One of the main limitations of control strategies is the efficient use of energy and the optimization of sensors.

The increase in temperature TIM due to losses in the car. Therefore, to derive a moderate temperature and estimate engine losses, it is necessary that the models include all the factors that generate them. Thus, it is possible to establish a correspondence between the electrical, mechanical and thermal models.

While the first two are used to determine losses in the rotor and the stator, the third gives the temperature value. The resistance value will be evaluated in the rotor and stator, the parameters of which will experience a greater change associated with temperature.

The thermal model of an asynchronous electric motor, presented in this article, also takes into account the mechanical losses responsible for increasing the temperature of the engine.

Author Biographies

D. Zubenko, O.M. Beketov National University of Urban Economy in Kharkiv

Ph.D., Associate Professor

O. Petrenko, O.M. Beketov National University of Urban Economy in Kharkiv

Doctor of Technical Sciences,  Associate Professor

References

Scarmin, А., Gnoatto, С., Aguiar, Е., Camara, Н., Carati, Е. (2010) Hybrid adaptive efficiency control technique for energy optimization in induction motor drives, in: 9th IEEE/IAS International Conference on Industry Applications (INDUSCON), 1–6. doi:10.1109/ INDUSCON.2010.5739975.

Тартаковський, Е.Д. Діагностування підшипників кочення допоміжних машин електровоза з використанням параметричної моделі та спектра обвідної вібрації. [Текст] / Е.Д. Тартаковський, С.В. Михалків, А.М. Ходаківський, Р.С. Сапон // Вісник НТУУ «КПІ». Серія машинобудування. 2016. №3(78). С. 12 — 18. DOI: http://dx.doi.org/10.20535/2305-9001.2016.78.79374

Tartakovsky, E.D., Mikhalkov, S.V., Khodakivsky, А.М., Sapon, R.S. (2016) Diagnostics of rolling bearings of auxiliary electric locomotive cars using a parametric model and an oscillatory vibration spectrum. Bulletin of NTUU "KPI". Series of mechanical engineering, 3 (78), 12 - 18. DOI: http://dx.doi.org/10.20535/2305-9001.2016.78.79374

Moreno, J., Hidalgo, F., Martinez, M. (2001) Realisation of tests to determine the parameters of the thermal model of an induction machine. IEE Proceedings Electric Power Applications, 148 (5), 393–397. http://dx.doi.org/10.1049/ip-epa:20010580.

Duran, M., Fernandez, J. (2004) Lumped-parameter thermal model for induction machines. IEEE Transactions on Energy Conversion, 19 (4), 791–792. http://dx.doi.org/10.1109/TEC.2004.837272.

Sousa, K.D.M., Hafner, A.A., Kalinowski, H.J., Silva, J.C.C. da (2012) Determination of temperature dynamics and mechanical and stator losses relationships in a three-phase induction motor using fiber Bragg grating sensors. IEEE Sensors Journal 12 (10), 3054 – 3061. http://dx.doi.org/10.1109/JSEN.2012.2210203.

Zhang, P., Habetler, Y. Du, T. (2010) A transfer-function-based thermal model reduction study for induction machine thermal overload protective relays. IEEE Transactions on Industry Applications, 46 (5), 1919–1926. http://dx.doi.org/10.1109/TIA.2010.2058831.

Park, R.H. (1929( Two-reaction theory of synchronous machines generalized method of analysis – Part I, Transactions of the American Institute of Electrical Engineers, 48 (3), 716–727. http://dx.doi.org/10.1109/T-AIEE.1929.5055275.

Krause, P.C., Thomas, C.H. (1965) Simulation of symmetrical induction machinery. IEEE Transactions on Power Apparatus and Systems, 84 (11), 1038–1053. http://dx.doi.org/10.1109/TPAS.1965. 4766135.

Dong, G., Ojo, O. (2006) Efficiency optimizing control of induction motor using natural variables. IEEE Transactions on Industrial Electronics, 53 (6), 1791–1798. http://dx.doi.org/10.1109/TIE.2006. 885117.

Boys, J., Miles, M. (1994) Empirical thermal model for inverter-driven cage induction machines. IEEE Proceedings – Electric Power Applications, 141 (6), 360–372. http://dx.doi.org/10.1049/ ip-epa: 19941462.

Plotkin, J., Stiebler, M., Schuster, D. (2008). A novel method for online stator resistance estimation of inverter-fed ac-machines without temperature sensors, in: 11th International Conference on Optimization of Electrical and Electronic Equipment, 155–161. doi:10.1109/OPTIM.2008.4602403.

Gao, Z., Habetler, T., Harley, R., Colby, R. (2008) A sensorless adaptive stator winding temperature estimator for mains-fed induction machines with continuous-operation periodic duty cycles. IEEE Transactions on Industry Applications, 44 (5), 1533–1542. http://dx.doi.org/ 10.1109/TIA.2008.2002208.

Hurst, K., Habetler, T. (1997) A thermal monitoring and parameter tuning scheme for induction machines, in: Industry Applications Conference. Thirty-Second IAS Annual Meeting, IAS ’97, Conference Record of the 1997 IEEE, 1, 136–142. doi:10.1109/ IAS.1997.643019.

Willsch, R., Ecke, W., Bartelt, H. (2002) Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering, in: 15th Optical Fiber Sensors Conference Technical Digest, 1, 49–54. doi:10.1109/OFS.2002. 1000499.

Grabarski, L., Silva, J. da, Kalinowski, H., Paterno, A. (2009) Static and dynamic measurements in small induction motors using a fiber Bragg grating interrogation unit, in: Brazilian Power Electronics Conference, 1113–1117. doi:10.1109/COBEP.2009.5347759.

Published
2019-07-02
How to Cite
ZubenkoD., & PetrenkoO. (2019). HEAT AND ELECTRIC MATHEMATICAL MODEL FOR ASYNCHRONOUS ELECTRIC MOTORS. Municipal Economy of Cities, 3(149), 16-18. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5411