DETERMINATION OF THE PROBABILITY OF SYSTEM DESTRUCTION "LOOSE BODY - CONSTRUCTION" AGAINST SHIFT

  • Khalife Rabih O.M. Beketov National University of Urban Economy in Kharkiv
Keywords:

Abstract

The need for modern science-intensive models for assessing the reliability of building structures, and especially the system "loose body – structure" is now very acute due to the fact that such an assessment has become mandatory in the design. The existing gap is the lack of algorithms for determining the reliability of a complex system and is intended to fill this study.

The aim of the article is to develop a method for determining the probability of failure of the system "bulk body – structure" against displacement using the method of statistical tests (Monte Carlo).

To determine the probability of stability of the retaining wall against displacement, it is proposed to use the method of statistical tests using the accepted normative method of calculation. According to this method, it is necessary to perform N statistical tests, for each of which we will perform calculations according to the algorithm described in the article.

A method for determining the probability of failure of the system "loose body – structure" against the shift by the statistical method of Monte Carlo. A test example was performed in the Mathcad environment.

Calculations were performed to determine the probability of failure of the system "loose body – structure" against the shift by the statistical method of Monte Carlo. It was found that the value of the probability of failure of the system "loose body – structure" against the shift over the base service life may be in the range of 1x10-5… 1x10-3.

It would also be interesting to use probabilistic methods to develop algorithms for the probability of failure of retaining walls due to loss of bearing capacity of the soil base, strength of the rock base, loss of strength of structural elements and joints, as well as the probability of exceeding the deformation of the base.

Author Biography

Khalife Rabih, O.M. Beketov National University of Urban Economy in Kharkiv

PhD Student

References

1. ENV 1991-1. Eurocode 1: Basis of Design and Actions of Structures/ Part 1: Brussels: CEN. 1993. – 87 р.
2. ISO 2394:2015. General principles on reliability for structures - International Organization for Standardization. 2015. – 111 p.
3. Wainberg, A.I. (2008). Reliability and safety of hydraulic structures. Selected problems: monograph. 304 p.
4. Kichaeva, O.V. (2018). Scientific principles of assessing the reliability and safety of the system "building - foundation". Dis. … Dr. tech. sсienses. – 462 p.
5. Lantukh-Lyashchenko, A.I. (2002) Modern theoretical principles of determining the reliability of bridges. Coll. Science. Proceedings of NTU "Roads and road construction", Vol. 24. 155–165.
6. Lychev, A.S. (2008) Reliability of building structures: tutorial. 184 p.
7. Raiser, V.D. (1986). Methods of the theory of reliability in the tasks of standardizing the design parameters of building structures. 192 p.
8. Rzhanitsyn, A.R. (1978). The theory of calculation of building structures for reliability. 239 p.
9. Perelmuter, A.V. (2007). Selected problems of reliability and safety of building structures. 185 p.
10. Pichugin, S.F. (2009). Reliability of building structures of industrial buildings: monograph. – 452 p.
11. Babaev V.N. Rational design of retaining walls / V.N. Babaev, V.S. Shmukler, S.H. Feirushah, O.A. Kalmykov, V.M. Zinchenko / BUITEMS “Journal of applied and emerging sciences”. – 2012 – Vol. 3, Issue 1 – P. 94–121.
12. Benjamin, J.R., Cornell, C.A. Probability (1970). Statistics, and Decision for Civil Engineers. New York: McGraw-Hill. 684 р.
13. Kalmykov О. Search for rational contour of back surface of retaining wall / O. Kalmykov, R Khalife, A. Grabowski // AIP Conference Proceedings. – 2019.
14. Ditlevsen, O., Madsen, H.O. (1996). Structural Reliability Methods. Chichester: John & Wiley Sons Ltd. 185 p.
15. Durairaj, S.K., Ong, S.K., Nee, A.Y.C., Tan, R.B.H. (2002). Evaluation of Life Cycle Cost. Analysis Methodologies. Corporate Environmental Strategy. Vol. 9. No. 1, 30–39.
16. Shmukler V. About the possibility for control of nature of seismic effect of bulky material on lateral surfaces / V.S. Shmukler, S.H. Feirusha, O. Kalmykov, R. Khalife // ZANCO Journal of Pure and Applied Sciences, p. 250–256.
17. Geotechnical Safety and Pisk V. Fifth International Symposium on Geotechnical Safety and Risk (ISGSR2015)/ Rotterdam, Netherlands, 13–16 October 2015. p. 1003.
18. Hoej, N.P. (2001). Risk and Safety Considerations at Different Project Phases. Safety, risk, and reliability – trends in engineering. International Conference. Malta. 1–8.
Published
2021-06-29
How to Cite
RabihK. (2021). DETERMINATION OF THE PROBABILITY OF SYSTEM DESTRUCTION "LOOSE BODY - CONSTRUCTION" AGAINST SHIFT. Municipal Economy of Cities, 3(163), 2-6. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5797