EFFICIENCY EVALUATION: EPOXYURETHANE DAMPING INSERTS IN VIBRATION PROTECTION SYSTEMS

Authors

  • А. Skripinets O.M. Beketov National University of Urban Economy in Kharkiv
  • N. Saienko National University of Civil Defence of Ukraine
  • V. Blazhko O.M. Beketov National University of Urban Economy in Kharkiv
  • L. Saienko O.M. Beketov National University of Urban Economy in Kharkiv

DOI:

https://doi.org/10.33042/2522-1809-2023-4-178-17-26

Keywords:

epoxyurethane insert, vibration protection and impact protection systems, amplitude and frequency characteristics

Abstract

The article contains experimental studies of the efficiency of the developed epoxyurethane compositions, which are designed to minimize vibration acceleration transmission coefficients in vibration protection and impact protection systems in the range frequencies from 20 to 2000 Hz. Determined that they have a high damping capacity and shorter technological cycle for preparing the composition.

Author Biographies

А. Skripinets, O.M. Beketov National University of Urban Economy in Kharkiv

PhD(Engin.), Senoir Lecturer at the Department of Chemistry and Integrated Technologies

N. Saienko, National University of Civil Defence of Ukraine

PhD(Engin.), Associate Professor at the Department

V. Blazhko, O.M. Beketov National University of Urban Economy in Kharkiv

PhD(Engin.), Associate Professor at the Department of Automation and Computer-Integrated Technologies

L. Saienko, O.M. Beketov National University of Urban Economy in Kharkiv

PhD(Engin.), Associate Professor at the Department of Automation and Computer-Integrated Technologies

References

Treviso, A., Van Genechten, B., Mundo, D., Tournour, M. (2015). Damping in composite materials: Properties and models. Composites Part B: Engineering, 78, 144-152. https://doi.org/10.1016/j.compositesb.2015.03.08

Duc, F., Bourban, P. E., Plummer, C. J. G., Månson, J. A. (2014). Damping of thermoset and thermoplastic flax fibre composites. Composites Part A: Applied Science and Manufacturing, 64, 115-123. https://doi.org/10.1016/j.compositesa.2014.04.016

Butaud, P., Foltête, E., Ouisse, M. (2016). Sandwich structures with tunable damping properties: On the use of shape memory polymer as viscoelastic core. Composite Structures, 153, 401-408. https://doi.org/10.1016/j.compstruct.2016.06.040

Xu, Z., Ha, C. S., Kadam, R., Lindahl, J., Kim, S., Wu, H. F., Zheng, X. (2020). Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices. Additive Manufacturing, 32, 101106. https://doi.org/10.1016/j.addma.2020.101106

Pico, D., Steinmann, W. (2016). Synthetic fibres for composite applications. Fibrous and textile materials for composite applications, 135-170. https://link.springer.com/chapter/10.1007/978-981-10-0234-2_4

Marzova, M. (2013). Advanced composite materials of the future in aerospace industry [J]. Incas Bulletin, 5(3), 139-150. https://doi.org/10.13111/2066-8201.2013.5.3.14

Skripinets, A., Saienko, N., Bikov, R., Maladyka, I., Saienko, L. (2023). Study of viscoelastic properties of epoxyurethane compositions for vibration protection of metal products. In AIP Conference Proceedings, 2684(1), 040024. https://doi.org/10.1063/5.0133582

Skripinets, A., Saienko, N., Hryhorenko, O., Berezovskiy, A. (2020). Development and Evaluation of the Possibility of Using Epoxyurethane Mastic in Railway Transport. In Materials Science Forum, 1006, 273-281. https://doi.org/10.4028/www.scientific.net/MSF.1006.273

Hryhorenko, O., Zolkina, Y., Saienko, N., Popov, Y., Bikov, R. (2020). Investigation of adhesive-strength characteristics of fire-retardant epoxy polymers modified with metal-containing additives. In IOP Conference Series: Materials Science and Engineering, 907(1), 012060. IOP Publishing. https://doi.org/10.1088/1757-899X/907/1/012060

Karnovsky, I.A., Lebed, E. (2016). Theory of vibration protection, 176-182. Switzerland: Springer International Publishing https://doi.org/10.1007/978-3-319-28020-2

Yan, G., Zou, H. X., Wang, S., Zhao, L. C., Wu, Z. Y., Zhang, W. M. (2021). Bio-inspired vibration isolation: Methodology and design. Applied Mechanics Reviews, 73(2), 020801. https://doi.org/10.1115/1.4049946

Geethamma, V. G., Asaletha, R., Kalarikkal, N., Thomas, S. (2014). Vibration and sound damping in polymers. Resonance, 19, 821-833. https://doi.org/10.1007/s12045-014-0091-1

Gordienko, A., Emelianenko, N., Saienko, L., Younis, B., Dobrokhodova, O. (2021). Study of a dual frequency vibration press for the formation of concrete elements. In IOP Conference Series: Materials Science and Engineering, 1164 (1), 012067. IOP Publishing. https://doi.org/10.1088/1757-899X/1164/1/012067

Saienko, L. V. (2022) Results of modeling of work of the vibration press with two frequency drive. Scientific Bulletin of Civil Engineering, 1 (107), 49-55. https://doi.org/10.29295/2311-7257-2022-107-1-49-54

Wang, R. M., Zheng, S. R., Zheng, Y. P. (2011). Other properties of polymer composites. Polymer Matrix Composites and Technology, 513-548.

Sujon, M. A. S., Islam, A., Nadimpalli, V. K. (2021). Damping and sound absorption properties of polymer matrix composites: A review. Polymer Testing, 104, 107388. https://doi.org/10.1016/j.polymertesting.2021.107388

Anwar, Z., Kausar, A., Muhammad, B. (2016). Polymer and graphite-derived nanofiller composite: An overview of functional applications. Polymer-Plastics Technology and Engineering, 55(16), 1765-1784. https://doi.org/10.1080/03602559.2016.1163598

Özbek, Ö. (2021). Axial and lateral buckling analysis of kevlar/epoxy fiber‐reinforced composite laminates incorporating silica nanoparticles. Polymer Composites, 42(3), 1109-1122. https://doi.org/10.1002/pc.2588

Bulut, M., Bozkurt, Ö. Y., Erkliğ, A., Yaykaşlı, H., Özbek, Ö. (2020). Mechanical and dynamic properties of basalt fiber-reinforced composites with nanoclay particles. Arabian Journal for Science and Engineering, 45, 1017-1033.

Uslu, E., Gavgali, M., Erdal, M. O., Yazman, Ş., Gemi, L. (2021). Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study. Materials Today Communications, 26, 101939. https://doi.org/10.1016/j.mtcomm.2020.101939

Gurina, G., Kozub, P., Kozub, S., Saienko, N., Skripinets, A. (2022). Detonation Nanodiamonds as Part of Smart Composite Paintwork Materials. In International Conference on Smart Technologies in Urban Engineering, 393-402. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-20141-7_36

Tiwari, S. K., Mishra, J., Hatui, G., Nayak, G. C. (2017). Conductive polymer composites based on carbon nanomaterials. Conducting Polymer Hybrids, 117-142. https://doi.org/10.1007/978-3-319-46458-9_4

Rajappan, S., Bhaskaran, P., Ravindran, P. (2017). An insight into the composite materials for passive sound absorption. Journal of Applied Sciences, 17(7), 339-356. https://doi.org/10.3923/jas.2017.339.356

Tang, X., Yan, X. (2020). A review on the damping properties of fiber reinforced polymer composites. Journal of Industrial Textiles, 49(6), 693-721. https://doi.org/10.1177/1528083718795914

Skripinets, A. V., Danchenko, Y. M., Kabus, A. V. (2015). A research on technological and physicochemical laws of manufacturing vibration-absorbing products based on epoxy-urethane polymer compositions. Eastern-European Journal of Enterprise Technologies, 3(11), 4-8. https://doi.org/10.15587/1729-4061.2015.43324

Andronov V. A., Danchenko Yu. M., Skripinets A. V., Bukhman O. M. (2014) Efficiency of utilization of vibration-absorbing polimer coating for reducing local vibration. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 85-91.

Berezovsky, A., Maladyka, I., Popov, Y., Sayenko, N. (2012). Comparative analysis of combustion products components and their toxic property of both epoxy and epoxyurthane polymeric vibration-absorptive fire retardants. Fire safety, 20, 27-31. https://journal.ldubgd.edu.ua/index.php/PB/article/view/683

Lecouvet, B., Sclavons, M., Bourbigot, S., Bailly, C. (2014). Highly loaded nanocomposite films as fire protective coating for polymeric substrates. Journal of fire sciences, 32(2), 145-164. https://doi.org/10.1177/0734904113500207

Rallini, M., Kenny, J. M. (2017). Nanofillers in polymers. In Modification of polymer properties, 47-86. William Andrew Publishing. https://doi.org/10.1016/B978-0-323-44353-1.00003-8

Kabeb, S. M., Hassan, A., Ahmad, F., Mohamad, Z., Sharer, Z., Mokhtar, M. (2022). Synergistic effects of hybrid nanofillers on graphene oxide reinforced epoxy coating on corrosion resistance and fire retardancy. Journal of Applied Polymer Science, 139(7), 51640. https://doi.org/10.1002/app.51640

Fujii, K., Nakagaito, A. N., Takagi, H. (2015). Effect of acid treatment on mechanical performance of polyvinyl alcohol/halloysite nanocomposites. Key Engineering Materials, 627, 113-116. https://doi.org/10.4028/www.scientific.net/KEM.627.113

Reddy, M. I., Kumar, M. A., Raju, C. R. B. (2018). Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites. Materials today: proceedings, 5(1), 458-462. https://doi.org/10.1016/j.matpr.2017.11.10

Benzait, Z., Trabzon, L. (2018). A review of recent research on materials used in polymer–matrix composites for body armor application. Journal of Composite Materials, 52(23), 3241-3263.https://doi.org/10.1177/0021998318764002

Downloads

Published

2023-09-04

How to Cite

Skripinets А., Saienko, N., Blazhko, V., & Saienko, L. (2023). EFFICIENCY EVALUATION: EPOXYURETHANE DAMPING INSERTS IN VIBRATION PROTECTION SYSTEMS. Municipal Economy of Cities, 4(178), 17–26. https://doi.org/10.33042/2522-1809-2023-4-178-17-26