EXPLORING THE STABILITY OF TOWER CRANES AND METHODS FOR IMPROVING THEIR OPERATIONAL SAFETY
DOI:
https://doi.org/10.33042/2522-1809-2025-1-189-32-42Keywords:
tower crane, building mechanics, constructions, safety, stability, external loadsAbstract
This article delves into the critical issue of stability in different types of tower cranes, specifically comparing those with rotating (slewing) towers and those with non-rotating (top-slewing) towers. It explores various methods to enhance the operational safety of these essential construction machines. Tower cranes, while indispensable in modern construction and heavy industries, are inherently susceptible to stability-related accidents due to their height, slenderness, and the dynamic nature of the loads they handle. This study comprehensively analyzes the influence of structural characteristics, operational loads, and a range of external forces on crane stability. The research explores factors such as wind loading, dynamic forces generated during operation (e.g., load swing, sudden stops), and even more extreme events like impact waves.
The research methodology combines a thorough review of existing literature, standards, and regulations with advanced computational analysis and experimental validation. The literature review encompasses relevant standards, such as the EN 13001 series, Ukrainian national regulations, and research publications focusing on crane stability, dynamic load analysis, and safety improvement methods. This review identifies gaps in traditional calculation methods, particularly their limitations in accurately representing complex load combinations and the behavior of non-standard or modified crane configurations.
To overcome these limitations, the study leverages 3D modeling and finite element analysis using industry-standard software. Detailed models of both rotating and non-rotating tower cranes are developed, allowing for a precise simulation of stress distributions, deformation patterns, and potential failure points under various loading scenarios. These models incorporate the specific geometric parameters, material properties, and connection details of the cranes. The finite element analysis approach allows for a significantly more accurate assessment of stress concentrations, particularly in critical areas such as the tower-to-base connection, compared to traditional methods of structural mechanics.
The comparative analysis highlights key differences in the stability characteristics of the two crane types. The location of the center of gravity, the response to dynamic loads (especially during slewing operations), and the impact of wind forces are meticulously examined. The findings indicate that cranes with rotating towers exhibit a larger degree of load sway and potentially greater vulnerability to certain types of dynamic instability.
To validate the theoretical and computational findings, experimental studies are conducted using a scaled-down (1:20) laboratory model of a KB-403 tower crane. A custom-designed computer program controls the model's movements, allowing for the precise simulation of various operational scenarios and the collection of empirical data on crane behavior.
Based on the combined theoretical, computational, and experimental results, the research proposes a novel design concept: a tower crane with a load-compensating mechanism using a movable counterweight. The study outlines an algorithm for controlling the position of this counterweight, dynamically adjusting it based on real-time sensor data (load weight, jib extension, wind speed and direction, tower inclination, and stress levels in critical components). Furthermore, the article explores the potential integration of artificial intelligence and machine learning techniques to create an adaptive control system for enhanced stability. This system would utilize data from a network of sensors to predict and mitigate potential instability issues in real-time. The importance of ongoing data collection and continuous refinement of the artificial intelligence models is emphasized to ensure long-term reliability and effectiveness.
References
Пахолюк О. А., Чапюк О. С. Забезпеченість українського ринку будівельної техніки вантажопідйомним обладнанням та його сервісним обслуговуванням. Сучасні технології та методи розрахунків у будівництві: зб. наук. праць. Луцьк: Луцький НТУ, 2020. Вип. 13. С. 71–85. DOI: https://doi.org/10.36910/6775-2410-6208-2020-3(13)-09
Будівельні та колійні машини. Ч. 2. Будівельна техніка : навч. посіб. / А. М. Кравець, А. В. Євтушенко, А. В. Погребняк та ін. Харків : УкрДУЗТ, 2016. 274 с. ISBN 978-617-654-058-8.
Ловейкін В. С., Ромасевич Ю. О., Голдун В. А., Крушельницький В. В. Динаміка та оптимальне керування рухом мостових кранів. Монографія. Київ, 2019. 460 с.
Feng R., Zhang E., Dong M. Jib vibration and payload swing of tower cranes in the case of trolley motion. Arabian Journal of Science and Engineering. 2021. Vol. 46, no. 12. P. 12179–12191. DOI: https://doi.org/10.1007/S13369-021-05804-3.
Rubio-Avila J. J., Alcantara-Ramirez R., Jaimes-Ponce J., Siller-Alcala I. I. Design, construction, and control of a novel tower crane. International journal of mathematics and computers in simulation. 2007. Vol. 1, iss. 2.
Augustyn M., Barski M., Chwał M., Stawiarski A. Experimental and Numerical Estimation of the Aerodynamic Forces Induced by the Wind Acting on a Fast-Erecting Crane. Applied Sciences. 2023. Vol. 13, no. 19. P. 10826. DOI: https://doi.org/10.3390/app131910826.
Jin L., Liu H., Zheng X., Chen S. Exploring the Impact of Wind Loads on Tower Crane Operation. Mathematical Problems in Engineering. 2020. Vol. 2020. P. 1-11. DOI: 10.1155/2020/2807438.
Кльон А. М., Третяк А. В. Визначення вітрового навантаження на баштовий кран за ГОСТ 1451-77 та ДБН В.1.2-2:2006. Системи управління навігації та зв’язку. 2022. Вип. 4 (70). С. 42–44. DOI: 10.26906/SUNZ.2022.4.042.
Пічугін С. Ф. Тенденції розвитку норм вітрового навантаження на будівельні конструкції. Сучасні технології та методи розрахунків у будівництві: зб. наук. праць. Луцьк : Луц. НТУ, 2022. Вип. 18. С. 98–116. DOI: 10.36910/6775-2410-6208-2022-8(18)-12.
Chen W., Qin X. R., Yang Z., Zhan P. Wind-induced tower crane vibration and safety evaluation. Journal of Low Frequency Noise, Vibration & Active Control. 2020. Vol. 39. P. 297–312. DOI: https://doi.org/10.1177/1461348419847306.
Monteiro F. A., Moreira R. M. A CFD Analysis of Wind Effects on Lifted Loads. International Journal of Advanced Engineering Research and Science. 2019. Vol. 6, no. 11. P. 1336. URL: https://journal-repository.com/index.php/ijaers/article/view/1336 (дата звернення: 29.05.2024).
Jin L., Liu H., Zheng X., Chen S. Exploring the Impact of Wind Loads on Tower Crane Operation. Mathematical Problems in Engineering. 2020. Vol. 2020. 2807438.
Nguyen T. K. Combination of feedback control and spring-dumper to reduce the vibration of crane payload. Archives of Mechanical Engineering. 2021. Vol. 68. P. 165–181.
Augustyn M., Barski M. Numerical and Analytical Estimation of the Wind Speed Causing Overturning of the Fast-Erecting Crane—Part II. Applied Sciences. 2024. Vol. 14, no. 11. P. 4694. DOI: https://doi.org/10.3390/app14114694.
Іваненко О. І., Щербак О. В., Любімов Ю. Ю. Комп'ютерне моделювання стійкості на моделі баштового крану на основі визначення опорних реакцій. Наукові вісті Далівського університету. 2020. № 18. URL: http://nvdu.snu.edu.ua/wp-content/uploads/2020/02/2020-18-6.pdf (дата звернення: 29.05.2024).
Hric S., Tkac J., Matiskova D., Micko M. Preliminary analysis of tower crane as a type of truss structure. MATEC Web of Conferences. 2019. Vol. 299. 03003. DOI: https://doi.org/10.1051/matecconf/201929903003.
Іваненко О. І., Щербак О. В., Крупко І. В., Четверіков В. С. Дослідження розподілу опорних навантажень баштового крана за допомогою комп'ютерного моделювання. Вісник ХНАДУ. 2023. Вип. 101, т. 1. С. 118–125. DOI: 10.30977/BUL.2219-5548.2023.101.1.118.
Іваненко О. І., Крупко І. В., Єрмакова С. О. Теоретичні дослідження стійкості баштового крана з урахуванням розподілу навантажень на опори. Підйомно-транспортна техніка. 2020. № 3 (64). С. 81–95.
Горбатюк Є., Булавка О. Огляд і аналіз пошкоджень та існуючих систем захисту баштових кранів під впливом вибухової хвилі. Автомобільний транспорт. 2024. № 53. С. 13–22. DOI: https://doi.org/10.30977/AT.2219-8342.2023.53.0.02.
Kenan H., Azeloglu O. Seismic performance analysis of tower crane mast types with different bracing configurations. Structures. 2021. Vol. 34. P. 286–302. DOI: 10.1016/j.istruc.2021.07.052.
Zeng G., Chen K., Wang Y. et al. Stress and strain analysis and parameter optimization of pipe truss tower connection of super-large tower crane based on FEM. Scientific Reports. 2024. Vol. 14. 3670. DOI: https://doi.org/10.1038/s41598-024-54351-y.
Gerdemeli I., Kurt S., Deliktas O. Finite Element Analysis of the Tower Crane. 14th International Research/Expert Conference "Trends in the Development of Machinery and Associated Technology Proceedings". 2010. TMT 2010, Mediterranean Cruise, 11-18 September 2010. P. 561-564.
Pristyák A. Analysis of dynamic loads of the lattice type mast structure of a tower crane using simulation method. Periodica Polytechnica Transportation Engineering. 1997. Vol. 25, no. 1-2. P. 103–113.
Чисельний експеримент з динаміки роботи баштового крану / В. О. Коваленко, О. О. Коваленко, В. В. Стрижак, О. М. Вудвуд, А. Ю. Васильєв, М. Г. Стрижак. Вісник Національного технічного університету "ХПІ". Сер. : Автомобілебудування: зб. наук. пр. Харків : НТУ "ХПІ", 2023. № 1. С. 12–26. DOI: https://doi.org/10.20998/2078-6840.2023.1.02.
Стефанов В. О., Дзержинський І. В. Керування стійкістю баштового крана за допомогою використання штучного інтелекту. Збірник наукових праць Українського державного університету залізничного транспорту. 2024. № 210. С. 7–18. DOI: https://doi.org/10.18664/1994-7852.210.2024.320673.
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in this collection agree with the following terms:
• The authors reserve the right to authorship of their work and give the magazine the right to first publish this work under the terms of license CC BY-NC-ND 4.0 (with the Designation of Authorship - Non-Commercial - Without Derivatives 4.0 International), which allows others to freely distribute the published work with a mandatory reference to the authors of the original work and the first publication of the work in this magazine.
• Authors have the right to make independent extra-exclusive work agreements in the form in which they were published by this magazine (for example, posting work in an electronic repository of an institution or publishing as part of a monograph), provided that the link to the first publication of the work in this journal is maintained. .
• Journal policy allows and encourages the publication of manuscripts on the Internet (for example, in institutions' repositories or on personal websites), both before the publication of this manuscript and during its editorial work, as it contributes to the emergence of productive scientific discussion and positively affects the efficiency and dynamics of the citation of the published work (see The Effect of Open Access).