MODELING OF DYNAMIC SYSTEMS IN THE DESIGN OF MECHANICAL STRUCTURES FOR INDUSTRY

Authors

  • Y. Maksymiuk Київський національний університет будівництва і архітектури
  • O. Avdiichuk Київський національний університет будівництва і архітектури
  • D. Lukianchuk Київський національний університет будівництва і архітектури

DOI:

https://doi.org/10.33042/2522-1809-2025-1-189-209-216

Keywords:

kinematic analysis, engineering optimisation, structural dynamics, vibration stability

Abstract

Modeling dynamic systems in the design of mechanical structures is a crucial area of modern engineering as it ensures increased efficiency, reliability, and resilience of equipment under changing operational conditions. The relevance of this study is driven by the necessity to develop high-tech solutions that address contemporary industrial challenges, particularly through the integration of adaptive and parametric approaches to design. The growing demands for energy efficiency, durability, and cost reduction in maintenance highlight the importance of utilizing innovative materials and modern engineering tools.
The aim of this study is to develop approaches for modeling dynamic systems using integrated parametric and adaptive methods to enhance the efficiency and resilience of mechanical structures under variable operational conditions. To achieve this aim, the study employed analytical reviews of contemporary approaches to dynamic system design, modeling of their behavior under changing loads, and comparative analysis of methods for integrating adaptive solutions into mechanical structures.
The study analyzed modern methods for modeling dynamic systems and assessed their practical efficiency in the industry. A model was developed to integrate parametric and adaptive approaches, enabling the optimization of structures while considering variable technological conditions. Key challenges were identified, including the high cost of implementation, technical limitations of software, and insufficient integration of innovations into traditional manufacturing processes.

The conclusions emphasize that the use of adaptive solutions and advanced materials significantly reduces vibrations, increases structural durability, and decreases maintenance costs. Recommendations include implementing sensor networks and digital twins for real-time equipment monitoring, as well as improving optimization models.
The prospects for further research involve developing new algorithms to enhance energy efficiency, integrating adaptive systems into industrial equipment, and creating innovative methods for predicting the technical condition of structures. This will ensure high industrial competitiveness in a dynamically changing market environment.

References

Лавріненко Л. І., Афанасьєва Л. В. Деякі аспекти проєктування будівельних конструкцій відповідно до вимог вогнестійкості. Збірник праць XІX Міжнародної наукової конференції "Сучасні досягнення в науці та освіті", 29 вересня – 6 жовтня 2024 р., м. Нетанія (Ізраїль). Хмельницький: ХНУ, 2024. (С. 125–130). URL: https://elar.khmnu.edu.ua/items/9e215569-1ef1-460b-933f-6b928b8a0a77 (дата звернення: 02.12.2024).

Lazebnyi V., Dosenko S., Bilevska O. Principles of 3D modeling of mechanical parts for use of the 3D printer. Computer-Integrated Technologies: Education, Science, Production. 2020. Issue 41. P. 51–58. DOI: https://doi.org/10.36910/6775-2524-0560-2020-41-09 (date of access: 02.12.2024).

Лазебний В. М. Моделювання механічних деталей за допомогою AutoCAD і SolidWorks для друку на 3D-принтерах. Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки.

Том 32 (71), № 3. С. 104–110. URL: https://tech.vernadskyjournals.in.ua/journals/2021/3_2021/3_2021.pdf#page=113 (дата звернення: 02.12.2024).

Морнева М. О., Торопов А. С. Порівняльна оцінка систем графічного моделювання і принципів автоматизації проєктування під час використання студентами інженерних спеціальностей. Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки. 2018. Т.29(68), № 6, Ч. 1. С. 54–57. URL: https://www.tech.vernadskyjournals.in.ua/eng/journals/2018/6_2018/part_1/11.pdf (дата звернення: 02.12.2024).

Van den Bosch P. J., Van der Klauw A. C. Modeling, Identification and Simulation of Dynamical Systems. CRC Press, 2020. 354 p. DOI: https://doi.org/10.1201/9780138746872 (date of access: 02.12.2024).

Nelles O. Nonlinear Dynamic System Identification. In: Nonlinear System Identification. Springer, Cham, 2020. P. 439–479. DOI: https://doi.org/10.1007/978-3-030-47439-3_19 (date of access: 02.12.2024).

Ritto T. G., Rochinha F. A. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mechanical Systems and Signal Processing. 2021. Vol. 155. Article 107614. DOI: https://doi.org/10.1016/j.ymssp.2021.107614 (date of access: 02.12.2024).

Sansana J., et al. Recent trends on hybrid modeling for Industry 4.0. Computers & Chemical Engineering. 2021. Vol. 151. Article 107365. DOI: https://doi.org/10.1016/j.compchemeng.2021.107365 (date of access: 02.12.2024).

Park J. H., et al. Recent Advances in Control and Filtering of Dynamic Systems with Constrained Signals. Berlin: Springer International Publishing, 2019. 302 p. DOI: https://doi.org/10.1007/978-3-319-96202-3 (date of access: 02.12.2024).

Brunton S. L., Noack B. R., Koumoutsakos P. Machine Learning for Fluid Mechanics. Annual Review of Fluid Mechanics. 2020. Vol. 52, Issue 1. P. 477–508. DOI: https://doi.org/10.1146/annurev-fluid-010719-060214 (date of access: 02.12.2024).

Leng J., et al. Digital twins-based smart manufacturing system design in Industry 4.0: A review. Journal of Manufacturing Systems. 2021. Vol. 60. P. 119–137. DOI: https://doi.org/10.1016/j.jmsy.2021.05.011 (date of access: 02.12.2024).

Zhou D., Zhao Y., Wang Z., He X., Gao M. Review on Diagnosis Techniques for Intermittent Faults in Dynamic Systems. IEEE Transactions on Industrial Electronics. 2020. Vol. 67, Issue 3. P. 2337–2347. DOI: https://doi.org/10.1109/TIE.2019.2907500 (date of access: 02.12.2024).

Hao H., et al. Towards Next Generation Design of Sustainable, Durable, Multi-Hazard Resistant, Resilient, and Smart Civil Engineering Structures. Engineering Structures. 2023. Vol. 277. Article 115477. DOI: https://doi.org/10.1016/j.engstruct.2022.115477 (date of access: 02.12.2024).

Dolgui A., et al. Scheduling in Production, Supply Chain and Industry 4.0 Systems by Optimal Control: Fundamentals, State-of-the-Art and Applications. International Journal of Production Research. 2019. Vol. 57, Issue 2. P. 411–432. DOI: https://doi.org/10.1080/00207543.2018.1442948 (date of access: 02.12.2024).

Ostertag A., et al. Reliable design of adaptive load-bearing structures with focus on sustainability. In: Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference. Venice (Italy), 2020. (P. 978–981). URL: https://www.rpsonline.com.sg/proceedings/esrel2020/pdf/3806.pdf(date of access: 02.12.2024).

Published

2025-04-02

How to Cite

Maksymiuk, Y., Avdiichuk, O., & Lukianchuk, D. (2025). MODELING OF DYNAMIC SYSTEMS IN THE DESIGN OF MECHANICAL STRUCTURES FOR INDUSTRY. Municipal Economy of Cities, 1(189), 209–216. https://doi.org/10.33042/2522-1809-2025-1-189-209-216

Issue

Section

статьи