MODELS OF THE GAS GENERATOR OF THE HYDROGEN STORAGE AND SUPPLY SYSTEM FOR IMPLEMENTATION OF ITS CONTROL OPTIONY
DOI:
https://doi.org/10.33042/2522-1809-2025-1-189-362-367Keywords:
gas generator, transfer function, time characteristics, control parametersAbstract
It is shown that two multiplicative components can be used as a model of the transfer function of the gas generator of the hydrogen storage and supply system, one of which describes inertial processes, and the second characterizes the delay process. An algorithm for determining the equivalent time constant of the gas generator is presented and it is shown that its value is 1.5 times different from the similar value obtained when implementing the algorithm for approximating the amplitude-frequency characteristic of the gas generator. Such an algorithm involves obtaining the ratio for the values of the derivatives of the Hurwitz polynomials of two transfer functions. It is noted that the use of time methods for determining the parameters of the gas generator of the hydrogen storage and supply system when implementing its control option is focused on the application of the transition function of this gas generator. When determining the transition function of the gas generator using the dynamic parameter obtained when approximating its amplitude-frequency characteristic, a methodological error may occur, the value of which reaches 60.0%. It is shown that the use of the algorithm for determining the equivalent time constant of the gas generator of the hydrogen storage and supply system provides the determination of its transition function with a methodological error, the value of which does not exceed 13.2%. When introducing a correction in the structure of the transition function of the gas generator, the value of the methodological error can be reduced to 5.1%. The example shows that depending on the method for determining the time parameter of the gas generator during its control, the value of the methodological error can vary. When using the method for determining the time parameter of the gas generator, which is based on determining the time of reaching a priori a given pressure value in the cavity of this gas generator, the value of the methodological error does not exceed 0.4%.
References
Fragiacomo, P., & Genovese, M. (2020) Numerical simulations of the energy performance of a PEM water electrolysis based high-pressure hydrogen refueling station. International Journal of Hydrogen Energy. Vol. 45. Issue 51. P. 27457-27470. DOI: 10.1016/j.ijhydene.2020.07.007.
Rusman A.A., & Dahari M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy. Vol. 41. Issue 28. P. 12108-12126. DOI: 10.1016/j.ijhydene.2016.05.244.
Abohamzeh E., Salehi F., Sheikholeslami M., Abbassi R., Khan F. Review of hydrogen safety during storage, transmission, and applications processes // Journal of Loss Prevention in the Process Industries. 2021. Vol. 72. P. 104569. Doi: https://doi.org/10.1016/j.jlp.2021.104569
Yu X., Kong D., He X., Ping P. Risk Analysis of Fire and Explosion of Hydrogen-Gasoline Hybrid Refueling Station Based on Accident Risk Assessment Method for Industrial System // Fire. 2023. Vol. 6 (5). P. 181. Doi: https://doi.org/10.3390/fire6050181
Ma Q., He Y., You J., Chen J., Zhang Z. Probabilistic risk assessment of fire and explosion of onboard high-pressure hydrogen system // International Journal of Hydrogen Energy. 2024. Vol. 50. P. 1261-1273. Doi: https://doi.org/10.1016/j.ijhydene.2023.10.157
Cui S., Zhu G., He L., Wang X., Zhang X. Analysis of the fire hazard and leakage explosion simulation of hydrogen fuel cell vehicles // Thermal Science and Engineering Progress. 2023. Vol. 41. P. 101754. Doi: https://doi.org/10.1016/j.tsep.2023.101754
Kashkarov S., Dadashzadeh M., Sivaraman S., Molkov V. Quantitative Risk Assessment Methodology for Hydrogen Tank Rupture in a Tunnel Fire // Hydrogen. 2022. Vol. 3 (4). P. 512-530. Doi: https://doi.org/10.3390/hydrogen3040033
Dadashzadeh, M., Kashkarov, S., Makarov, D., & Molkov, V. (2018). Risk assessment methodology for onboard hydrogen storage. International Journal of Hydrogen Energy, 43 (12), 6462-6475. Doi: https://doi.org/10.1016/j.ijhydene.2018.01.195
Zhang, Y., Cao, W., Shu, C.-M., Zhao, M., Yu, C., Xie, Z., Liang, J., Song, Z., & Cao, X. (2020). Dynamic hazard evaluation of explosion severity for premixed hydrogen-air mixtures in a spherical pressure vessel. Fuel, 261, 116433. Doi: https://doi.org/10.1016/j.fuel.2019.116433
Li, B., Han, B., Li, Q., Gao, W., Guo, C., Lv, H., Liu, Y., Jin, X., & Bi, M. (2022). Study on hazards from highpressure on-board type III hydrogen tank in fire scenario: Consequences and response behaviours. International Journal of Hydrogen Energy, 47 (4), 2759-2770. Doi:
https://doi.org/10.1016/j.ijhydene.2021.10.205
Abramov, Y., Basmanov, O., Krivtsova, V., Mikhayluk, A., & Khmyrov, I. (2023). Determining the possibility of the appearance of a combustible medium in the hydrogen storage and supply system Eastern-European Journal of Enterprise Technologies, 2 (4 (122)), 47–54. Doi: https://doi.org/10.15587/1729-4061.2023.276099
Абрамов Ю.О. Ефективність функціонування підсистеми пожежної безпеки системи зберігання та подачі водню / Ю.О. Абрамов, В.І. Кривцова, А.О. Михайлюк // Комунальне господарство міст – Х, Том 3, вип. 184, 2024, С. 185-190, DOI https://doi.org/10.33042/2522-1809-2024-3-184-185-190 13. Абрамов Ю.О. Інформаційні можливості перехідної функції газогенератора системи зберігання та подачі водню для оцінки його рівня пожежонебезпеки / Ю.О. Абрамов, В.І. Кривцова, А.О. Михайлюк // Комунальне господарство міст – Х, Том 6, вип. 180, 2023, С. 148-153, DOI https://doi.org/10.33042/2522-1809-2023-6-180-148-153
Абрамов Ю.О., Кривцова В.І., Михайлюк А.О. Газогенератори систем зберігання та подачі водню на основі гідрореагуючих складів:моделі, характеристики, методи контролю.-Харків:НУЦЗУ,2020.- 87с.
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in this collection agree with the following terms:
• The authors reserve the right to authorship of their work and give the magazine the right to first publish this work under the terms of license CC BY-NC-ND 4.0 (with the Designation of Authorship - Non-Commercial - Without Derivatives 4.0 International), which allows others to freely distribute the published work with a mandatory reference to the authors of the original work and the first publication of the work in this magazine.
• Authors have the right to make independent extra-exclusive work agreements in the form in which they were published by this magazine (for example, posting work in an electronic repository of an institution or publishing as part of a monograph), provided that the link to the first publication of the work in this journal is maintained. .
• Journal policy allows and encourages the publication of manuscripts on the Internet (for example, in institutions' repositories or on personal websites), both before the publication of this manuscript and during its editorial work, as it contributes to the emergence of productive scientific discussion and positively affects the efficiency and dynamics of the citation of the published work (see The Effect of Open Access).