OPTIMIZATION OF THE OPERATIVE PLANNING TASK FOR FREIGHT TRANSPORTATION ON MOTOR TRANSPORT

Authors

  • Kharkiv National Automobile and Highway University
  • Kharkiv National Automobile and Highway University
  • Kharkiv National Automobile and Highway University

Abstract

To solve the problems in the organization of operational planning of freight road transport with the purpose of choosing the optimal service strategy, an algorithm for developing a model for the operational planning of cargo transportation by a trucking enterprise has been compiled in the form of a structural and logical scheme for the parallel solution of operational planning tasks such as: initial data obtaining, rational vehicle selection, vehicle loading, route assignment, participants' activity coordination (vehicles' traffic schedule generation).

The parallel solution of operational planning issues allows taking into account the mutual influence of the results of solving all operational planning tasks, and to adopt a rational plan that will allow achieving the lowest costs when servicing the clients.

Increasing the efficiency of the transportation complex is possible due to the development and application of a decision support system using an integrated economic and mathematical model of operational planning. Most operational planning tasks are the NP-complete, but for no one of them has yet been able to find a polynomial decision algorithm. To solve the problems, it is suggested to use the approximate heuristic algorithms, which make it possible to obtain a rational solution within an acceptable time. To develop a decision support system, it is proposed to use a systematic approach to solving operational planning problems taking into account a set of criteria: target functions for solving problems along with the vehicle selection, vehicle loading, routing, and coordination of the transportation process participants' functioning.

The set of input data such as the nominal vehicle load capacity, volume of goods, cargo trip length, the costs associated with the idle time of the motor vehicle during the loading and unloading operations, the costs associated with the downtime of loading and unloading mechanisms in expectation of motor vehicles allow the creation of a large number of delivery schemes. To determine the rational delivery scheme, it is necessary to take into account the mutual influence of the results to solve the tasks of the operational planning for freight service by the motor transport enterprise on the use of the proposed technique for parallel solving the operational planning tasks.

 

Keywords: planning, transportation, routing, motor vehicle, efficiency, coordination, cargo, transport, scheme, complex.

Author Biographies

, Kharkiv National Automobile and Highway University

кандидат технічних наук, доцент

, Kharkiv National Automobile and Highway University

кандидат технічних наук, доцент

, Kharkiv National Automobile and Highway University

кандидат технічних наук, доцент

References

Література

Гречан, А. П. Інноваційна складова в забезпеченні кон-курентних переваг транспортного підприємства [Текст] / Гречан А.П. // Конкурентоспроможність національної економіки: матеріали ХVІІ міжнародної науково-практичної конференції, 5-6 жовтня 2017 р. – Київ., 2017. – с. 156-160.

Житков, В.А. Методы оперативного планирования грузовых автомобильных перевозок [Текст] / В.А. Жит-ков, К.В. Ким – М.: Транспорт, 1982. - 184с.

Эффективность логистического управления [Текст: учебник для вузов / под общ.ред. д.т.н., проф. Л. Б. Ми-ротина. - М.: Издательство "Экзамен", 2004. - 448с.

Войтенков, С. С. Совершенствование оперативного планирования перевозок грузов помашинными отправка-ми в городах [Текст]: автореферат дис. кандидата тех-нических наук : 05.22.10 / Сергей Сергеевич Войтенков - Иркутск, 2011. - 19 c.

Reis, V. (2018) A disaggregated freight transport market model based on agents and fuzzy logic. Transportmetrica B: Transport Dynamics, 1-23.

Reis, V. (2014) Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model. Transportation research part A: Policy and practice. 61, 100-120.

Давідіч, Ю.О. Розробка графіка руху транспортних засобів при організації вантажних перевезень [Текст]: навч. посіб. / Ю. О. Давідіч; Харк. нац. акад. міськ. госп-ва. – Х.: ХНАМГ, 2010. – 345 с.

McKinnon, A. (2018) Sustainable freight distribution. Integrated Futures and Transport Choices: UK Transport Policy Beyond the 1998 White Paper and Transport Acts: UK Transport Policy Beyond the 1998 White Paper and Transport Acts.

Bai, R. (2018) Optimisation of transportation service network using κ-node large neighbourhood search. Computers & Operations Research, 89, 193-205.

Perboli, G. et al. (2018) Simulation–optimisation framework for City Logistics: an application on multimodal last-mile delivery. IET Intelligent Transport Systems, 12(4), 262-269.

Speranza, M. G. (2018) Trends in transportation and logistics. European Journal of Operational Research, 264 (3), 830-836.

Калініченко, О.П. Рішення задач оперативного плану-вання на автомобільному транспорті [Текст]: навчаль-ний посібник. / О.П. Калініченко. - Харків: Видавництво ХНАДУ, 2015. -143 с.

Reference

Grechan, A.P. (2017) Innovative component in providing con-competitive advantages of a transport enterprise. The Competitiveness of the National Economy: Materials of the XVIII International Scientific and Practical Conference, October 5-6, 2017, 156-160.

Zhitkov, V.A. & Kim, K.V. (1982) Methods of operational planning of freight road transport. M .: Transport, 184.

Myrotyna, L. B. (2004) Efficiency of logistics management: Textbook for high schools. Moscow: Publishing house "Examination", 448.

Voytenkov, S. S. (2011) Improvement of operational planning of cargo transportation by truck mail in cities: the dissertation diss. candidate of technical sciences: 05.22.10, 19.

Reis, V. (2018) A disaggregated freight transport market model based on agents and fuzzy logic. Transportmetrica B: Transport Dynamics, 1-23.

Reis, V. (2014) Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model. Transportation research part A: Policy and practice. 61, 100-120.

Davydich Yu.O. Development of the schedule of vehicles for the organization of freight traffic: teaching. manual / Yu O. Davydych; Hark nats acad. city households-va. - Kh .: KhNAMG, 2010. - 345 p.

McKinnon, A. (2018) Sustainable freight distribution. Integrated Futures and Transport Choices: UK Transport Policy Beyond the 1998 White Paper and Transport Acts: UK Transport Policy Beyond the 1998 White Paper and Transport Acts.

Bai, R. (2018) Optimisation of transportation service network using κ-node large neighbourhood search. Computers & Operations Research, 89, 193-205.

Perboli, G. et al. (2018) Simulation–optimisation framework for City Logistics: an application on multimodal last-mile delivery. IET Intelligent Transport Systems, 12(4), 262-269.

Speranza, M. G. (2018) Trends in transportation and logistics. European Journal of Operational Research, 264 (3), 830-836.

Kalinichenko, O.P. (2015) Solving operational problems Road planning: A manual. Kharkiv: KhNADU Publishing House, 143.

Published

2018-07-27

How to Cite

, , & . (2018). OPTIMIZATION OF THE OPERATIVE PLANNING TASK FOR FREIGHT TRANSPORTATION ON MOTOR TRANSPORT. Municipal Economy of Cities, (142), 108–113. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5192