FORECASTING CHARACTERISTICS OF COMPOSITE STRENGTH ON THE BASIS OF PREFORMS IN ELEMENTS OF BUILDING STRUCTURES

Array

Authors

  • A. Kondratiev O.M. Beketov National University of Urban Economy in Kharkiv
  • O. Andrieiev State Enterprise "Antonov"

Keywords:

preform, premix, reinforcing material, angle between harnesses, strength criterion, test

Abstract

Currently, wicker composite structures for various purposes are widely used in many industries. The use of such preforms allows to provide the possibility of automation of production, high speed and efficiency of the process of manufacturing polymeric composite materials and structures based on them. Knowledge of their properties allows you to optimize the production of structures with the necessary parameters during design. In the article the model of composite material on the basis of wicker reinforcement was further developed. For the practical implementation of this model, it is sufficient to test material samples with three different angles between the harnesses, for example, ± 30º, ± 45º and ± 60º. A mathematical description of the model is given. The model made it possible to predict the physical and mechanical characteristics of the composite material when it is laid out on curved surfaces. At the same time some fictitious limits of durability of a composite are defined. This is due to the fact that each value of the angle between the harnesses corresponds to its physical and mechanical characteristics of the unidirectional composite material. In this case, the ultimate strength curves necessarily pass through the points corresponding to the experimental data. The article shows that the possible deviations of the strength limits in the range of angles between the harnesses will lie within the range of characteristics obtained by testing. The article shows that in the realized interval of angles between the harnesses, almost any polynomial criterion of strength will accurately describe the strength of the composite reinforced with a braided sleeve. The obtained parameters, in contrast to the existing ones, allow to predict the strength characteristics of the composite on the basis of braided sleeves depending on the positioning and location of the material on the forming surface. The obtained results are the basis for solving the problems of calculating the strength of building structures from composite materials based on wicker preforms.

Author Biographies

A. Kondratiev, O.M. Beketov National University of Urban Economy in Kharkiv

Doctor of Engineering Sciences, Professor

O. Andrieiev, State Enterprise "Antonov"

PhD in Engineering Sciences

References

1. Kondratiєv A.V., Proncevich O.O. (2021). Energozberіgajucha tehnologіja vigotovlennja elementіv budіvelnih konstrukcіj іz polіmernih materіalіv. Vіsnik Pridnіprovskoi derzhavnoї akademії budіvnictva ta arhіtekturi, 1, 13–20.
2. Zadorozhnіkova І.V., Kuh S.P. (2017). Metodi ta sposobi zastosuvannja skladnih polіmerіv pri pіdsilennі zalіzobetonnih konstrukcіj. Suchasnі tehnologії ta metodi rozrahunkіv u budіvnictvі, 8, 81–86.
3. Shantha Kumar D., Rajkumar R. (2016). Experimental investigation on flexural behavior of concrete beam with glass
fibre reinforced polymer rebar as internal reinforcement. International Journal of Chemical Sciences, 14(S1), 319–329.
4. Minasjan Z.A., Papojan A.R., Manukjan Je.A., Manasjan N.K., Muradjan V.G. (2020). Obzor tehnologij izgotovlenija i metodov ocenki svojstv pletenyh izdelij. Vestnik nauki i obrazovanija, 18(96). 20–30.
5. Andreev A.V., Gajdachuk V.E., Kondratiev A.V., Orlov O.V. (2017). Koncepcija tehnologicheskogo obespechenija sozdanija jeffektivnyh konstrukcij otechestvennyh grazhdanskih samoletov iz polimernyh kompozicionnyh materialov v sovremennyh uslovijah. Aviacionno-kosmicheskaja tehnika i tehnologija, 3(138). 64–76.
6. Vlasenko F.S., Raskutin A.E., Doneckij K.I. (2015). Primenenie pletenyh preform dlja polimernyh kompozicionnyh materialov v grazhdanskih otrasljah promyshlennosti (obzor). Trudy VIAM, 1, 20–29. https://doi.org/10.18577/2307-6046-2015-0-1-5-5.
7. Korotkov I.A., Borshhev A.V., Karavaev R.Ju., Vlasenko F.S. (2015). Stroitel'stvo betonno-kompozitnyh mostov. Trudy VIAM, 1. 38–42.
8. Raskutin A.E., Evdokimov A.A., Mishkin S.I., Mihaldykin E.S. (2019). Arochnye mosty s primeneniem ugleplastikovyh arochnyh jelementov. Konstrukcii iz kompozicionnyh materialov, № 2, 22–29.
9. Pat. US20060174549A1 (2006) Rapidly-deplojable lightshheight load resisting arch system / H. Dagher, E. Landis, Imad El Chiti. 10.08.2006. https://patents.google.com/patent/US20060174549/
10. Pat. US20070175577A1 (2006) Composite construction members and method of making / H. Dagher, J. Tomblin, R. Nye, I. Chiti, M. Bodwell, A. Baker, R. Lopez-Anido. 12.10.2010. https://patents.google.com/patent/US20070175577
11. Lomov S.V., Bogdanovich E., Ivanov D.S., Mungalov D., Karahan M., Verpoest I. (2009). A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results. Composites Part A: Applied Science and Manufacturing, 40, 8, 1134–1143. https://doi.org/10.1016/j.compositesa.2009.03.012
12. Ivanov D.S., Lomov S.V., Bogdanovich A.E., Karahan M., Verpoest I. (2009). A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results. Composites Part A: Applied Science and Manufacturing, 40, 8, 1144–1157.
https://doi.org/10.1016/j.compositesa.2009.04.032
13. Zdraveva E., Gonilho-Pereira C., Fangueiro R., Lanceros-Mendez S., Jalali S., Araújo M. (2010). Multifunctional Braided Composite Rods for Civil Engineering Applications. Advanced Materials Research, 123 – 125, 149–152. https://doi.org/10.4028/www.scientific.net/AMR.123-125.149
14. Okano M., Sugimoto K., Saito H., Nakai A., Hamada H. (2005). Effect of the braiding angle on the energy absorption properties of a hybrid braided FRP tube. Proceedings of the Institution of Mechanical Engineers. Part L, 219, 1, 59–66. https://doi.org/10.1243/146442005X10256
15. Erber A., Drechsler K. Drechsler K. (2009). Torsional performance and damage tolerance of braiding configurations. JEC Composites Magazine, 46, 42–45.
16. Arnold W., William A., Wieslaw B., Robert G., Lee K., Justin L., Gary R. (2009). Characterization of Triaxial Braided Composite Material Properties for Impact Simulation. 65-th American Helicopter Society International Annual Forum, 2, 912–933.
17. Tomilova M.V., Smirnova N.A., Hammatova V.V. (2016). Issledovanie svojstv pletenyh poloten pri odnoosnom rastjazhenii. Vestnik tehnologicheskogo universiteta, 19, 8, 88–89.
18. Andreev A.V. (2010). Metodika opredelenija strukturnyh parametrov kompozitov, armirovannyh pletenymi rukavami. Otkrytye informacionnye i komp'juternye integrirovannye tehnologii, 47, 99–104.
19. Ershov S.V., Kalinin E.N., Kuznecov V.B., Nikiforova E.N. (2017). Opredelenie ugla armirovanija pletenyh preform metodom analiza izobrazhenij. Vestnik Cherepoveckogo gosudarstvennogo universiteta, 4, 14–20. https://doi.org/10.23859/1994-0637-2017-4-79-2
20. Nishimoto H., Ohtani A., Nakai A., Hamada H. (2010). Prediction Method for Temporal Change in Fiber Orientation. Textile Res J, 80 (9), 814–821.
21. Zhenkai W., Jialu L., Braided A. (2006). Measurement Technique for Three-Dimensional Braided Composite Material Preform Using Mathematical Morphology and Image Texture. AUTEX Research Journal, 6(1), P. 30–39.
22. Doneckij K.I., Kogan D.I., Hrul'kov A.V. (2014). Svojstva polimernyh kompozicionnyh materialov, izgotovlennyh na osnove pletenyh preform. Trudy VIAM, 3. 17–23. https://doi.org/10.18577/2307-6046-2014-0-3-5-5
23. Andreev A.V., Karpov Ja.S. (2010). Modelirovanie uprugih i prochnostnyh svojstv kompozitov, armirovannyh pletenymi rukavami. Voprosy proektirovanija i proizvodstva konstrukcij letatel'nyh apparatov, 4(64), 7–10.
24. Karpov Ja.S., Andreev A.V. (2012). Realizacija metodiki prognozirovanija fiziko-mehanicheskih harakteristik kompozita na osnove pletenyh rukavov. Voprosy proektirovanija i proizvodstva konstrukcij letatel'nyh apparatov, 4(72), 161–165.
25. Karpov Ja.S. (2001). Mehanika kompozicionnyh materialov. Kharkiv: National Aerospace University “Kharkiv Aviation Institute” Publ., 247.
26. Vasiliev V.V., Morozov E.V. (2007). Advanced Mechanics of Composite Materials. Elsevier, 504.

Published

2020-11-27

How to Cite

Kondratiev, A., & Andrieiev, O. (2020). FORECASTING CHARACTERISTICS OF COMPOSITE STRENGTH ON THE BASIS OF PREFORMS IN ELEMENTS OF BUILDING STRUCTURES: Array. Municipal Economy of Cities, 6(159), 2–9. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5668