ANALYSIS OF ANALYTICAL MODELS AND THE DEPENDENCES REALIZED BY THEM FOR DEFINITION OF MECHANICAL CHARACTERISTICS OF COMPOSITE FILLERS

Array

Authors

  • A. Kondratiev O.M. Beketov National University of Urban Economy in Kharkiv

Keywords:

sandwich constructions, mechanical properties, cellular and tubular fillers.

Abstract

The analysis of the accuracy of analytical models and the mechanical properties they implement is carried out for various types of composite aggregates of sandwich structures. The accuracy assessment of approximate analytical dependencies of the mechanical characteristics of the composite honeycomb core is given. The applicability of analytical dependencies at the initial stages of the design of cellular structures is established. The accuracy of the results of a numerical experiment is noted. This is due to the approximate nature of standard test methods. Both for the elastic modulus and for the shear moduli, their values obtained on the basis of information technologies of finite element analysis exceed their corresponding values determined by analytical dependencies. This excess over the corresponding analytical values for the shear moduli is close to a constant value for various reinforcement angles and does not exceed 1.14. For the elastic modulus of the first kind, the excess varies from 1.03 to 1.8 for various angles of cell reinforcement. The analytical dependences of the reduced mechanical characteristics of the tubular aggregate are obtained. The idea of the method for determining the mechanical characteristics of a tubular filler is to fulfill the requirement of equality of the relative axial and shear deformations of a conventional continuous type element and a real one, selected within one tube, taking into account only its material. The conclusion is drawn that the mechanical characteristics of the tubular aggregate, determined by the analytical model, to different degrees differ from the corresponding characteristics obtained on the basis of information technology of finite element analysis. Moreover, the difference in the elastic moduli of the first kind is much smaller than in the shear moduli. The reasons for these discrepancies are analyzed. It is justified and recommended to use constant correction factors for the analytical values of the reduced mechanical characteristics of the tubular aggregate, allowing their further use in the calculation of plate and shell sandwich structures.

Author Biography

A. Kondratiev, O.M. Beketov National University of Urban Economy in Kharkiv

Doctor of Engineering Sciences, Professor

References

1. Birman V., George A. Kardomateas (2018). Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering, 142, 221–240. https://doi.org/10.1016/j.compositesb.2018.01.027
2. Yanes-Armas S., J. De Castro, Keller T. (2017). Long-term design of FRP-PUR web-core sandwich structures in building construction. Composite Structures, 181, 214–228. https://doi.org/10.1016/j.compstruct.2017.08.089
3. Elfaki I., Abdalgadir S. (2020). Composite sandwich structures in advanced civil engineering applications – a review. Computational Research Progress in Applied Science & Engineering, 6, 259–262.
4. Ding K.W., Wang G., Yin W.Y. (2013). Application of composite sandwich panels in construction engineering. Applied Mechanics and Materials, 291 – 294, 1172–1176. https://doi.org/10.4028/www.scientific.net/amm.291-294.1172
5. Manalo A., Aravinthan T., Fam A., Benmokrane B., Manalo A. (2016). State-of-the-art review on FRP sandwich systems for lightweight civil infrastructure. Journal of Composites for Construction, 21, 1, 1–16. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000729
6. Petrova E.A., Kalmykov O.A. (2015). K ocenke predel'nyh sostojanij trehslojnyh sjendvich-panelej. Komunal'ne gospodarstvo mіst, 121, 38–41.
7. Feng Y., Qiu H., Yicong Gao, Hao Zheng, Tan J. (2020). Creative design for sandwich structures: a review. International Journal of Advanced Robotic Systems, 17, 3, 1–24. https://doi.org/10.1177/1729881420921327
8. Gajdachuk A.V., Gajdachuk V.E., Karpikova O.A., Kirichenko V.V., Kondratiev A.V. (2015). Sotovye zapolniteli i panel'nye konstrukcii kosmicheskogo naznachenija. Kharkiv, National Aerospace University Kharkiv Aviation Institute Publ., 2. 247.
9. Dvejrin A.Z, Majorova E.V. (2011). Analiz jeffektivnosti vnedre-nija integral'nyh konstrukcij s trubchatymi jelementami iz polimernyh kompozicionnyh materialov. Voprosy proektirovaniya i proizvodstva konstruktsii letatel'nykh apparatov, 4(68), 65–77.
10. Zaid N.Z.M., Rejab M.R.M., Mohamed N.A.N. (2016). Sandwich structure based on corrugated-core: a review. MATEC Web Conf, 74, 6. https://doi.org/10.1051/matecconf/20167400029
11. Panin V.F., Gladkov Ju.A. (1991). Konstrukcii s zapolnitelem. Moscow. Mashinostroenie Publ. 272.
12. Zhang J., Yanagimoto J. (2019). Design and fabrication of formable CFRTP core sandwich sheets. CIRP Ann Manuf Technol, 68, 1, 281–284. https://doi.org/10.1016/j.cirp.2019.04.060
13. Xu G., Wang Z., Zeng T., Cheng S., Fang D. (2018). Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores. Composites Science and Technology, 156, 296–304. https://doi.org/10.1016/j.compscitech.2018.01.015
14. Mackerle J. (2002). Finite element analyses of sandwich structures: a bibliography (1980–2001). Engineering Computations, 19, 2, 206–245. https://doi.org/10.1108/02644400210419067
15. Caliri M.F., Ferreira A.J.M., Tita V.A. (2016). A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method. Composite Structures, 156, 63–77. https://doi.org/10.1016/j.compstruct.2016.02.036
16. Gajdachuk V.E., Kirichenko V.V., Kondratiev A.V. (2014). Konceptual'nyj podhod k formirovaniju fiziko-mehanicheskih harakteristik sjendvichevyh struktur kompozitnyh konstrukcij raketno-kosmicheskoj tehniki. Otkrytye informacionnye i komp'juternye integrirovannye tehnologii, 66, 27–36.
17. Prochnost', ustojchivost', kolebanija: spravochnik (1968). Ed. Birger I.A, Panovko Ja.G.. Moscow: Mashinostroenie Publ.,. 463
18. Gajdachuk A.V., Majorova E.V., Chumak A.A. (2013). Jeksperimental'no-teoreticheskaja metodika opredelenija fiziko-mehanicheskih harakteristik i prochnostnyh svojstv sjendvichevoj trubchatoj struktury iz PKM. Aviacionno-kosmicheskaja tehnika i tehnologija, 6(103), 25–31.
19. Saidani M., Roberts M.W.L. (2006). Experimental investigation of honeycomb constructional elements. Asian Journal of Civil Engineering (Building and Housing), 7, 5, 479–486. https://ajce.bhrc.ac.ir/Portals/25/PropertyAgent/2905/Files/6277/479.pdf
20. Gajdachuk V.E., Kondratiev A.V., Omel'chenko E.V. (2009). Privedennye fiziko-mehanicheskie harakteristiki trubchatogo zapolnitelja dlja trehslojnyh konstrukcij letatel'nyh apparatov, Otkrytye informacionnye i komp'juternye integrirovannye tehnologii, 44, 67–78.
21. Kondratiev A.V., Majorova E.V., Chumak A.A. (2012). Chislennoe opre-delenie privedennyh uprugih fiziko-mehanicheskih harakteristik trubchatogo zapolnitelja. Voprosy proektirovaniya i proizvodstva konstruktsii letatel'nykh apparatov, 1(69), 70–79.
22. Majorova K. V. (2016). Proektuvannya integral`ny`x try`sharovy`x aviakonstrukcij z polimerny`x kompozy`cijny`x materialiv iz trubchasty`m zapovnyuvachem. Dy`s. ... kand. texn. nauk 05.07.02. Nacz. aerokosm. un-t im. M. Ye. Zhukovs`kogo "Xark. aviacz. in-t". Kharkiv, 184.
23. Xiong J., Feng L., Ghosh R., Wu H., Wu L., Ma L., Vaziri A. (2016). Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores. Composite Structures, 156, 307–319. https://doi.org/10.1016/j.compstruct.2015.10.009
24. Endogur A.I., Vajnberg M.V., Ierusalimskij K.M. (1986). Sotovye konstrukcii. Vybor parametrov i proektirovanie. Moscow: Mashinostroenie Publ., 200.
25. Vasiliev V.V., Morozov E.V. Advanced Mechanics of Composite Materials. Elsevier, 2007. 504.
26. Harchenko M.E. (2015). Sintez racional'nyh konstruktivno-tehnologicheskih reshenij ugleplastikovyh formorazmerostabil'nyh konstrukcij kosmicheskogo naznachenija. Dis. ... kand. tehn. nauk 05.07.02. Dnepropetr. nac. un-t im. O. Gonchara. Dnepropetrovsk, 189.
27. Slivinskij V.I., Kondratiev A.V., Harchenko M.E. (2012). Vlijanie shemy armirovanija napolnitelja na svojstva uglesotoplasta. Kompozitnye materialy, 6, 1, 33–40.
28. Slivinskij V.I. (2000). Analiz metodov mehanicheskih ispytanij sotovyh zapolnitelej na sdvig. Voprosy proektirovaniya i proizvodstva konstruktsii letatel'nykh apparatov, 1(18), 68–77.
29. Slivinskij V.I. (1999). Analiz standartnyh metodov mehanicheskih ispytanij sotovyh zapolnitelej na poperechnoe rastjazhenie i szhatie. Voprosy proektirovaniya i proizvodstva konstruktsii letatel'nykh apparatov, 3(16), 25–37.
30. Gajdachuk V.E., Kirichenko V.V., Kondratiev A.V. (2008). Korrektirovka sushhestvujushhih analiticheskih zavisimostej fiziko-mehanicheskih harakteristik sotovogo zapolnitelja s uchetom ego vysoty. Otkrytye informacionnye i komp'juternye integrirovannye tehnologii, 40, 5–12.

Published

2021-03-26

How to Cite

Kondratiev, A. (2021). ANALYSIS OF ANALYTICAL MODELS AND THE DEPENDENCES REALIZED BY THEM FOR DEFINITION OF MECHANICAL CHARACTERISTICS OF COMPOSITE FILLERS: Array. Municipal Economy of Cities, 1(161), 8–18. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/view/5706