SYNTHESIS OF THERMAL DIAGNOSTIC EXPERT COMPONENTS WITH AN ARTIFICIAL NEURON
Array
Keywords:
electronic model of a neuron, synthesis of components, artificial neural network, remote control, modeling, parameter converter, modulator, transport, traction motor, identification, programming, algorithm.Abstract
The article notes the growing popularity of digital programmable technology in diagnostic monitoring systems of electromechanical equipment (EME) for various purposes due to the ability to monitor the technical condition of operating devices in real time. The main reasons that restrain the use of DMS with artificial neural networks in the municipal sphere are considered. It has been noted the directions of improvement of popular means of thermal parameters monitoring and hardware solutions to increase the initial data validity used in the possible EMO fault identification. The purpose of this work was to study and develop components for the formation of initial information, including artificial neurons, which make it possible to increase the reliability of possible fault identification accompanied by heating of individual parts of the operated electromechanical equipment. Based on the adopted algorithm for approximating the initial data arrays, the priority of using the logistic function for modeling the rate of temperature change in the EME was justified. It have been proposed the electronic model structure of an artificial neuron (AN) and an algorithm for generating information output signal, depending on the rate of change of a controlled parameter at a technological object. It have been presented the electronic modeling results in the Simulink environment and the physical implementation of the AN electronic model, which confirmed the suitability of the proposed device in the diagnostic thermal expert of the EME technical condition during its operation in real time. Electronic experiments with AN made it possible to obtain a calibration characteristic for a practical assessment of the tendency for the development of non-standardized thermal events that may cause possible faults in certain parts of the equipment. It have been considered possible options for using AN in local thermal diagnostic tools for the analysis and assessment of events indicating the feasibility of performing unscheduled maintenance or preceding possible and unknown electromechanical equipment faults. It has been presented the results of experiments and simulation of thermal processes, confirming the expandability of the functional diagnostic devices properties with neural network systems, which popularity is constantly growing.
References
2. Esaulov, S.M. (2019). Control and modeling parameters for heat diagnostics of power electrical equipment failure − Urban services. Kiev: Technics, Iss. 3 (149), pp. 19−28.
3. Lutai, S.N. (2014). Methods and analysis of diagnostics of asynchronous electric motors − Electrical and computer systems. No. 15 (91). рр. 306−310.
4. Esaulov, S.M. (2019). Research, modeling and design of components of an artificial neural network module for remote diagnostics of electric motors − Urban services. Kiev: Technics, Iss. 5 (151). pp.13−22.
5. Kruglov, V.V. (2001). Fuzzy logic and artificial neural networks. Moscow : FIZMATLIT, 201.
6. Khaikin, S. (2006). Neural networks: a full course. Moscow : Williams, 1104.
7. Esaulov, S.M. (2020). Improving the efficiency of thermal diagnostic control of electric motors − Urban services. Kiev: Technics, Iss. 4 (157). pp.163−171.
8. Artificial Neural Networks: Concepts and Theory, IEEE Computer Society Press, 1992.
9. Wasserman, F. (1992). Neurocomputer technology − Moscow : Mir, 275
10. A.S. 1479944 USSR, MKI3 G 06 F 7/650. Device for modeling a neuron / Kalyaev A.V., Chernukhin Yu.V., Bryukhomitsky Yu.A., Galuev G.A. (USSR). - No. 4296969 / 31-13; declared 08.24.87; publ. 05/15/89, Bul. No. 18.
11. Patent 142979 Ukraine, IPC6 G06G 7/60 (2006.01). Neuron model / Yesaulov S.M.; Babicheva O.F.; Kozlova O.S.; Zakurdai S.O. ; Kulbashna NI - 201u201911671; applicant and patent owner of KhNUMG named after O.M. Beketov, application. 12/05/2019; publ. 10.07.2020, Bull. № 13/2020.
12. Safonov, L.N. (1977). Precision angle sensors with printed windings − Moscow : Mechanical Engineering, 276.
13. Babicheva, O.F. (2018). Automated design of electromechanical devices, components of digital control systems and diagnostic systems: textbook. manual. Kharkiv : KhNUMG them. O.M. Beketova, 355.
14. MATLAB. The Language of Technical Computing. Getting Started with MATLAB.The Math Works, Inc. USA, 2000.
15. Simulink. Model-Based and System-Based Design. Using Simulink. The Math Works, Inc. USA, 2002.
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in this collection agree with the following terms:
• The authors reserve the right to authorship of their work and give the magazine the right to first publish this work under the terms of license CC BY-NC-ND 4.0 (with the Designation of Authorship - Non-Commercial - Without Derivatives 4.0 International), which allows others to freely distribute the published work with a mandatory reference to the authors of the original work and the first publication of the work in this magazine.
• Authors have the right to make independent extra-exclusive work agreements in the form in which they were published by this magazine (for example, posting work in an electronic repository of an institution or publishing as part of a monograph), provided that the link to the first publication of the work in this journal is maintained. .
• Journal policy allows and encourages the publication of manuscripts on the Internet (for example, in institutions' repositories or on personal websites), both before the publication of this manuscript and during its editorial work, as it contributes to the emergence of productive scientific discussion and positively affects the efficiency and dynamics of the citation of the published work (see The Effect of Open Access).