CONTROL ALGORITHM FOR IMPLEMENTING A MATHEMATICAL MODEL FOR ASSESSING THE EFFECTIVENESS OF SCENARIO MANAGEMENT AS A TOOL FOR ENSURING THE SECURITY OF A STRATEGIC FACILITY

Authors

  • O. Azarenko Scientific Research Laboratory and Experimental Center “BRAND TRADE”
  • Yu. Honcharenko European University
  • M. Diviziniuk Center for Information-Analytical and Technical Support of Nuclear Power Facilities Monitoring of the National Academy of Sciences of Ukraine
  • R. Shevchenko National University of Civil Protection of Ukraine
  • O. Shevchenko National University of Civil Protection of Ukraine

DOI:

https://doi.org/10.33042/2522-1809-2024-4-185-197-203

Keywords:

critical infrastructure object, scenario management, algorithm, mathematical model, emergency

Abstract

Ensuring the safety of critical infrastructure facilities and other strategic objects is one of the main tasks of Ukraine as a state defending itself against military aggression. To accomplish this task, the authors developed a mathematical model of scenario management as a tool to ensure a strategic object’s security. However, the problem arises that, due to the nonlinearity of the processes under consideration, the theoretical solutions rely on assessing various controlling influences and, if necessary, their corrections to obtain the planned result. This article aims to develop a control algorithm for implementing a mathematical model to assess the effectiveness of scenario management as a tool for ensuring the security of a strategic object.

For this, it is necessary to complete the following tasks: to consider a mathematical model for assessing the effectiveness of scenario management as a tool for ensuring the safety of a strategic object; develop the structure of the control algorithm for the implementation of this mathematical model; analyse the structure of the algorithm and make recommendations about the need to create the basic procedures for its implementation.

A proposed control algorithm for implementing a mathematical model for assessing the effectiveness of scenario management as a tool for ensuring the security of a strategic object is a hierarchical structure of nine blocks (or modules) located at seven hierarchical levels, connected by direct and feedback links. It assesses the effectiveness of solving private tasks to ensure the security of a strategic object under protection, adjusting control influences aimed at implementing the selected scenario management option.

At the first hierarchical level is the module for determining the parameters of systematisation of critical infrastructure conglomeration security data. The second level includes the object conglomeration module, which consists of submodules. The third hierarchical level contains the module for collecting data by parameters. The fourth level has two modules. The first is for performing calculations, and the second is for selecting evaluation parameters. It also aims to supplement or reject duplicate data. The fifth hierarchical level also contains two modules. The first is evaluating results according to particular criteria, and the second is the selection of evaluation criteria. The sixth level is the results interpretation module. This module provides the final assessment of the facility’s safety. The seventh hierarchical level is the module for making decisions on adjusting control actions.

For the correct, practical application of this control algorithm to assess the effectiveness of solving private tasks to ensure the security of strategic and critical infrastructure objects under protection, it is necessary to develop the procedures for its application in detail.

Author Biographies

O. Azarenko, Scientific Research Laboratory and Experimental Center “BRAND TRADE”

Doctor of Physical and Mathematical Sciences, Full Professor, Deputy Head

Yu. Honcharenko, European University

Doctor of Technical Sciences, Associate Professor, Professor at the Department of Cybersecurity and Information Protection

M. Diviziniuk, Center for Information-Analytical and Technical Support of Nuclear Power Facilities Monitoring of the National Academy of Sciences of Ukraine

Doctor of Physical and Mathematical Sciences, Full Professor, Chief Researcher

R. Shevchenko, National University of Civil Protection of Ukraine

Doctor of Technical Sciences, Full Professor, Head of the Department of Automatic Security Systems and Information Technologies

O. Shevchenko, National University of Civil Protection of Ukraine

Candidate of Technical Sciences, Leading Specialist at the Administrative Work Department

References

Kliuchove zavdannia nashoi derzhavy / Promovy ta zvernennia / Dostup: https://www.president.gov.ua/news/speeches

Linhart, P., Richter, R. (2003): Ochrana kritické infrastruktury. http.//www.mvcr.cz/casopisy/112/3_2003/linhart.html

Presidential Decision Directive 63 (1998), https://www.fas.org/ irp/offdocs/pdd/pdd-63.htm

The National Strategy for the Physical Protection of Critical Infrastructures and Key Assets, http://www.whitehouse.gov/pcipb/physical.html

Ukaz Prezydenta Ukrainy №8/2017. Pro rishennia Rady natsionalnoi bezpeky i oborony Ukrainy vid 29 hrudnia 2016 roku «Pro udoskonalennia zakhodiv zabezpechennia zakhystu obiektiv krytychnoi infrastruktury». Dostup: https://www.president.gov.ua/documents/82017-21058

Zakon Ukrainy «Pro krytychnu infrastrukturu» {Iz zminamy, vnesenymy zghidno iz Zakonom № 2684-IX vid 18.10.2022}. Dostup: https://zakon.rada.gov.ua/laws/show/1882-20#Text

Diviziniuk M.M. Teoretychny zasady paradyhmy «tsyvilnyi zakhyst» / M.M. Diviziniuk, S.A. Yeremenko, O.A. Lieftierov, A.V. Pruskyi, V.V. Strilets, V.M. Strilets, R.I. Shevchenko // Monohrafiia. Kyiv.: TOV «AZYMUT-PRINT». 2022. 335 s. (ISBN 978-617-8015-20-6).

Postanova KMU vid 04.03.2015 r. № 83 «Pro zatverdzhennia pereliku obiektiv derzhavnoi vlasnosti, shcho maiut stratehichne znachennia dlia ekonomiky i bezpeky derzhavy». Dostup: https://document.vobu.ua/doc/7863

Papalou, A., Baros, K., (2019). Assessing Structural Dam-age after a Severe Wildfire: A Case Study Department of Civil Engineering, University of Peloponnese; 26334 Patras, Greece. Buildings, 9(7), 171 DOI: http://doi.org/10.3390/buildings9070171

Jakubowski, K., Paś, J., Duer, S., & Bugaj, J., (2021). Operational Analysis of Fire Alarm Systems with a Focused, Dispersed and Mixed Structure in Critical Infrastructure Buildings, Energies 14(23), 7893; DOI: http://doi.org/10.3390/en14237893

Aliş, B., Yazici, C., & Özkal, F.M., (2022). Investigation of Fire Effects on Reinforced Concrete Members via Finite Element Analysis ACS Omega 2022, 7(30), 26881–26893 DOI: http://doi.org/10.1021/acsomega.2c03414

Azarenko O.V., Honcharenko Yu.Iu., Diviziniuk M.M., Shevchenko O.S., Shevchenko R.I. 1. Azarenko O.V., Honcharenko Yu.Iu., Diviziniuk M.M., Shevchenko O.S., Shevchenko R.I. Kharakterystyka obiektiv krytychnoi infra-struktury derzhavy (osoblyvosti yadernykh ta inshykh stratehichnykh obiektiv) // Komunalne hospodarstvo mist, 2023, tom 1, vypusk 175. S.160-168 ISSN 2522-1809(Print); ISSN2522-1817 (Online) DOI 10.33042/2522-1809-2023-1-175-160-168

Azarenko O.V., Honcharenko Yu.Iu., Diviziniuk M.M., Shevchenko O.S., Shevchenko R.I. Poniattia zahrozy ta ryzyku, yikh zahalni rysy ta pryntsypialni vidminnosti (stosovno yadernykh ta inshykh stratehichnykh obiektiv) // Komunalne hospodarstvo mist, 2023, tom 3, vypusk 177. S.153- 158 ISSN 2522-1809(Print); ISSN2522-1817 (Online) DOI 10.33042/2522-1809-2023-3-177-153-158

O.V. Azarenko, Yu.Iu. Honcharenko, M.M. Diviziniuk , O.S. Shevchenko, R.I. Shevchenko Metody doslidzhennia zahroz i ryzykiv // Komunalne hospodarstvo mist, 2023, tom 4, vypusk 178. S.269- 279 ISSN 2522-1809(Print); ISSN2522-1817 (Online) DOI https://doi.org/10.33042/2522-1809-2023-4-178-172-178

Azarenko O.V., Honcharenko Yu.Iu., Diviziniuk M.M., Shevchenko O.S., Shevchenko R.I. Metody otsinky terorystychnykh zahroz stosovno stratehichnykh obiektiv derzhavy // Komunalne hospodarstvo mist, 2023, tom 6, vypusk 180. S. 187-195 ISSN 2522-1809(Print); ISSN2522-1817 (Online) DOI: https://doi.org/10.33042/2522-1809-2023-6-180-187-195

Ponomarenko S., Samberg A., Chumachenko S., Popel, V. (2017). A Model of Recreation Management of Abandoned Territories after Armed Conflicts. Proceedings of 24th TIEMS Annual Conference and General Assembly, Kyiv, Ukraine, 4-7 December 2017.

Samberg, A., Mikhno, O. (2015) R&D trends in the areas of critical infrastructure and civil protection. The International Scientific Conference on Modelling of Risks and Threats of Critical Infrastructures. The State Emergency Service of Ukraine, The Ukrainian Civil Protection Research Institute, 20-21 April 2015, Kiev, UKRAINE.

Robert A. Fowler, Andre Samberg, Martin J. Flood, and Tom J. Greaves. (2007) Topographic and Terrestrial Lidar. American Society for Photogrammetry and Remote Sensing. 252 р.

World nuclear industry status report, 2014. Режим доступу: http//www.worldnuclearreport.org/IMG/pdf

Roadmap for Fukusima Daiichi restoration. World nuclear news. 18 april 2011.

No significant damage to fuel at unit 4. World nuclear news. 30 april 2011.

World nuclear industry status report, 2015. Режим доступу: http//www.worldnuclearreport.org/the_world_nuclear_indus try_status_report_2015/html

Published

2024-09-06

How to Cite

Azarenko, O., Honcharenko, Y., Diviziniuk, M., Shevchenko, R., & Shevchenko, O. (2024). CONTROL ALGORITHM FOR IMPLEMENTING A MATHEMATICAL MODEL FOR ASSESSING THE EFFECTIVENESS OF SCENARIO MANAGEMENT AS A TOOL FOR ENSURING THE SECURITY OF A STRATEGIC FACILITY. Municipal Economy of Cities, 4(185), 197–203. https://doi.org/10.33042/2522-1809-2024-4-185-197-203

Most read articles by the same author(s)

<< < 1 2 3 > >>