ВИКОРИСТАННЯ НЕЙРОННИХ МЕРЕЖ ДЛЯ ВИРІШЕННЯ ПРОБЛЕМ НЕРОЗВ'ЯЗНИХ ЗАДАЧ І РІШЕННЯ СКЛАДНИХ ОБЧИСЛЮВАЛЬНИХ РІВНЯНЬ ЕКСПЛУАТАЦІЇ ЕЛЕКТРОТРАНСПОРТУ
Array
Ключові слова:
нульова нейронна мережа, електротранспорт, чисельні алгоритми, надійна стабільністьАнотація
Використання нейронних мереж для вирішення проблем нерозв'язності і вирішення складних обчислювальних рівнянь стає загальноприйнятою практикою в академічних колах і промисловості. Було показано, що, незважаючи на складність, ці проблеми можна сформулювати як набір рівнянь, а ключ - знайти нулі з них.
Посилання
Liu , Y.-J., Tong , S., Li , D.-J., Gao , Y. (2016) Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint, IEEE Trans. Fuzzy Syst. 24 (5), 1147–1158 .
Liu , Y.-J., Tong , S. (2015) Adaptive fuzzy identification and control for a class of non- linear pure-feedback MIMO systems with unknown dead zones, IEEE Trans. Fuzzy Syst. 23 (5), 1387–1398.
Wang , H., Chen , B., Liu , K., Liu , X., Lin , C. (2014) Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis, IEEE Trans. Neural Netw. Learn. Syst. 25(5), 947–958.
Liu , Y.-J., Tong , S. (2016) Optimal control-based adap-tive NN design for a class of nonlinear discrete-time block-triangular systems, IEEE Trans. Cybern. 46 (11), 2670–2680 .
Liu , Y.-J., Li , J. , Tong , S., Chen , C.P. (2016) Neural network control-based adaptive learn- ing design for nonlinear systems with full-state constraints, IEEE Trans. Neu- ral Netw. Learn. Syst. 27 (7), 1562–1571 .
Li , S. , He , J. , Li , Y. , Rafique , M.U. (2017) Distributed recurrent neural networks for co- operative control of manipula-tors: a game-theoretic perspective, IEEE Trans. Neural Netw. Learn. Syst., 28 (2), 415–426.
Li , S. , Chen , S. , Liu , B. , Li , Y. , Liang , Y. (2012) Decentralized kinematic control of a class of collaborative re-dundant manipulators via recurrent neural networks, Neuro-computing, 91, 1–10.
Li , S. , Liu , B. , Li , Y. (2013) Selective positive–negative feedback produces the winner–take-all competition in recurrent neural networks, IEEE Trans. Neural Netw. Learn. Syst., 24 (2), 301–309.
Zhang , Y. , Guo , D. , Luo , Z. , Zhai , K. , Tan , H. (2016) CP-activated WASD neuronet ap- proach to asian popu-lation prediction with abundant experimental verifica- tion, Neu-rocomputing, 198, 48–57 .
Luo , X. , Shang , M. (2016) Efficient extraction of non-negative latent factors from high-dimensional and sparse matri-ces in industrial applications, in: Proceed- ings of the IEEE 16th International Conference on Data Mining, IEEE, 311–319 .
Huang , Y.-A., You , Z.-H. , Li , X., Chen , X., Hu , P., Luo , X. (2016) Construction of reliable protein–protein interac-tion networks using weighted sparse representation based clas-sifier with pseudo substitution matrix representation features, Neu- rocomputing, 218, 131–138 .
Luo , X. , Zhou , M. (2016) Regularizaed extraction of non-negative latent factors from high-dimensional sparse matrices, in: Proceedings of the IEEE In- ternational Conference on Sys-tems, Man, and Cybernetics, IEEE, 0 01221–0 01226 .
Wang , H. , Liu , P.X. , Liu , S. (2017) Adaptive neural synchronization control for bilat- eral teleoperation systems with time delay and backlash-like hysteresis, IEEE Trans. Cy-bern.
Wang , H. , Liu , W., Liu , P.X. , Lam , H. (2016) Adaptive fuzzy decentralized control for a class of interconnected nonlin-ear system with unmodeled dynamics and dead zones, Neuro-computing, 214, 972–980 .
Stanimirovi ´c , P.S. , Živkovi ´c , I.S. , Wei , Y. (2015) Recurrent neural network approach based on the integral repre-sentation of the Drazin inverse, Neural Comput., 27 (10), 2107–2131.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому збірнику, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії CC BY-NC-ND 4.0 (із Зазначенням Авторства – Некомерційна – Без Похідних 4.0 Міжнародна), котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).