EVOLUTION OF AUTONOMOUS MOBILE FIRE EXTINGUISHING EQUIPMENT

Authors

  • Y. Abramov National University of Civil Defence of Ukraine
  • V. Sobyna National University of Civil Defence of Ukraine
  • О. Soshinskiy National University of Civil Defence of Ukraine

DOI:

https://doi.org/10.33042/2522-1809-2023-3-177-147-152

Keywords:

fire-extinguishing means, fire-extinguishing substance, mobile means, human operator

Abstract

It is shown that the evolution of autonomous mobile fire-extinguishing means includes four stages, in which these fire-extinguishing means are divided into portable, wearable, mobile and mobile. All these fire extinguishing means are united by the presence of a human operator. Portable fire extinguishing equipment is characterized by a small weight, which does not exceed 20 kilograms. Portable fire extinguishing equipment has a greater mass (up to 30 kilograms) and, as a result, a longer duration of extinguishing agent supply (up to 75 seconds). Such tools have improved ergonomic characteristics, and the possibility of using gel-forming substances as fire-extinguishing substances gives them new properties. It is noted that such fire-extinguishing substances provide record values of the coefficient of use. Mobile fire extinguishing equipment provides a longer duration of extinguishing agent supply and relieves the operator. All these fire extinguishing means are united by the fact that their operational capabilities are limited by the low speed of their movement, the value of which does not exceed 1.2 meters per second. The fourth stage of the evolution of autonomous mobile firefighting equipment is characterized by the placement of firefighting equipment on a mobile base. A segway can act as such a base, as a result of which the operational capabilities of the fire extinguishing agent are significantly expanded. It is noted that the speed of movement of such fire extinguishing means can reach 50 kilometers per hour with a radius of action of up to 50 kilometers. The mass of the fire-extinguishing substance in such fire-extinguishing means can reach (40-50) kilograms, and the duration of its supply is up to 40 seconds. It is shown that in mobile fire-extinguishing equipment, the task of matching the characteristics of the operator with the technical characteristics of the fire-extinguishing equipment is relevant. This is especially important for mobile fire extinguishing equipment. Examples of determining the parameters of the human operator and their use in mobile fire extinguishing equipment are given.

Author Biographies

Y. Abramov, National University of Civil Defence of Ukraine

Dr. Sci. (Engin.), Full Professor, Chief Researcher at the Research Center

V. Sobyna, National University of Civil Defence of Ukraine

PhD (Engin.), Associate Professor, Head at the Department of logistics and technical support of rescue operations

О. Soshinskiy, National University of Civil Defence of Ukraine

PhD (Art Critic.), Scientific at the Department of Problems of civil protection and technogenic and ecological safety of the scientific and research center

References

Paris Firefighters Used This Remote-Controlled Robot to Extinguish the Notre Dame Blaze. Retrieved from: https://spectrum.ieee.org/colossus-the-firefighting-robot-that-helped-save-notre-dame#toggle-gdpr

Firefighter Drones – How Drones are Being Used for Helping Fire Departments. Retrieved from: https://dronenodes.com/firefighterdrones/

Baburov V., Baburyn V., Fomyn V. (2007) Avtomatycheskye ustanovky pozharotushenyia, 294s.

Dolhovydov A., Terebnev V. (2008) Avtomatycheskye ustanovky poroshkovoho pozharotushenyia, 322s.

Kotov A. (2010) Pozharotushenye y systemы bezopasnosty. K.:Brand Master, 278s.

Horban Yu. (2013) Pozharnыe rabotы y stvolnaia tekhnyka v pozharnoi avtomatyke y pozharnoi okhrane. M.: Pozhnauka, 352s.

Prysiazhniuk L., Bilkun D., Balenko V. (1997) Metodychnyi posibnyk z pytan ekspluatatsii ta zastosuvannia vohnehasnykiv. K.: Osnova, 149 s.

Borysov P., Rosokha V., Abramov Yu., Kireiev O., Babenko O. (2003) Sposib hasinnia pozhezhi ta sklad dlia yoho zdiisnennia: Pat. 60882 Ukraina: MPK A62S 1/00, zaiav. ta patentovlasnyk APB Ukrainy - № 20030326004; zaiav. 25.03.2023; opubl. 15.10.2003, Biul. № 10.

Abramov Yu., Kyreev A. (2015) Heleobrazuiushchye ohnetushashchye y ohnezashchytnыe sredstva povыshennoi эffektyvnosty prymenytelno k pozharam klassa A. Kh.: NUHZU. 254s.

Abramov Yu., Sobyna V., Neklonskyi I., Liashevska O. (2021) Prystrii dlia hasinnia pozhezh: Pat. 147249 Ukraina: MPK A62S 15/00, zaiav. ta patentovlasnyk NUTsZU. № 202008130; zaiav. 18.12.2020; opubl. 21.04.2021, Biul. № 16.

Abramov Yu., Sobyna V., Sokolov D., Yashchenko O. (2021) Ustanovka dlia hasinnia pozhezh: Pat. 147099 Ukraina: MPK A62S 13/00, A62S 31/00, A62S 35/02, zaiav. ta patentovlasnyk NUTsZU. № 202008031; zaiav. 15.12.2020; opubl. 7.04.2021, Biul. № 14.

Abramov Yu., Tyshchenko Ye., Sobyna V. (2017) Mobilna pozhezhna ustanovka: Pat. 119180 Ukraina: MPK A62S 27/00, A62S 37/00, zaiav. ta patentovlasnyk NUTsZU. № 201704071; zaiav. 24.04.2017; opubl. 11.09.2017, Biul. № 17.

Abramov Yu., Sobyna V., Khyzhniak A., Sokolov D., Neklonskyi I. (2019) Mobilna pozhezhna ustanovka: Pat. 136909 Ukraina: MPK A62S 27/00, A62S 37/00, zaiav. ta patentovlasnyk NUTsZU. № 201903554; zaiav. 08.04.2019; opubl. 10.09.2019, Biul. № 17.

Abramov Yu., Sobyna V., Khyzhniak A., Khmyrov I., Neklonskyi I. (2019) Mobilna pozhezhna ustanovka: Pat. 132198 Ukraina: MPK A62S 27/00, A62S 37/00, zaiav. ta patentovlasnyk NUTsZU. - № 201810005; zaiav. 08.10.2018; opubl. 11.02.2019, Biul. № 3.

Abramov Yu., Sobyna V., Borysova L., Borysova L., Danilin O., Taraduda D. (2020) Mobilna pozhezhna ustanovka: Pat. 145667 Ukraina: MPK A62S 27/00, A62S 37/00, zaiav. ta patentovlasnyk NUTsZU. - № 202004943; zaiav. 31.07.2020; opubl. 28.12.2020, Biul. № 24

Sobina, V., Hizhnyak A., Abramov Yu. (2020) Justification for the selection of the parameters of the channel for controlling the angular position of the nozzle of a mobile fire installation. Fire Safety Issues, Vol. 47. P. 120-126. https://nuczu.edu.ua/images/topmenu/science/zbirky-naukovykh-prats-ppb/ppb47/18.pdf

Matheson E., Minto R., Zampieri E., Faccion M., Rosati G. (2019) Human – Robot Collaboration in Manufacturing Applications: A Review. Robotics. 2, Vol. 8(4): 100. Doi: https://doi.org/10.3390/robotics8040100

Sobina, V., Hizhnyak A., Abramov Yu. (2019) Determination of parameters of the model of the operator of a mobile fire installation. Fire Safety Issues, Vol. 45. P .161-166. https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol45/Sobina.pdf

Abramov, Y., Basmanov, O., Sobyna, V., Sokolov, D., Rahimov. S. (2022). Developing a method for determining the time parameters of a mobile fire extinguisher operator. Eastern-European Journal of Enterprise Technologies, 6 (2 (120)), 93–99. doi: https://doi.org/10.15587/1729-4061.2022.266825

Published

2023-05-26

How to Cite

Abramov Ю., Sobyna В., & Soshinskiy О. (2023). EVOLUTION OF AUTONOMOUS MOBILE FIRE EXTINGUISHING EQUIPMENT. Municipal Economy of Cities, 3(177), 147–152. https://doi.org/10.33042/2522-1809-2023-3-177-147-152

Most read articles by the same author(s)

1 2 > >>