CONCEPTUAL PROVISIONS FOR THE FORMATION OF THE CADASTRE OF INTELLECTUAL RESOURCES AS PART OF THE CENTER FOR THE PROCESSING OF CADASTRAL AND OTHER ADDITIONAL INFORMATION

Authors

  • K. Meteshkin Харківський національний університет міського господарства імені О.М. Бекетова
  • M. Pilicheva Харківський національний університет міського господарства імені О.М. Бекетова
  • L. Maslii Харківський національний університет міського господарства імені О.М. Бекетова

DOI:

https://doi.org/10.33042/2522-1809-2024-6-187-211-217

Keywords:

geoinformation system, cadastre of intellectual resources, expert, knowledge model, database

Abstract

Today, the development of cadastral and registration systems has achieved significant results, however, during the analysis of research on the problem of the formation of an integrated cadastral system, difficulties related to the implementation of legislation were revealed. The purpose of this article is to study the formation of a cadastre of intellectual resources for making management decisions based on the results of processing cadastral information from various cadastral systems. During the integration of data from existing cadastres of natural resources, the cadastral information processing center (CPI) from existing cadastres of natural resources is used. The procedure of data interoperability and updating of information in the relevant databases using specially developed software tools is carried out in the CPI. In the CPI, a cognitologist (expert in the subject area) performs the following actions: accepts an application to solve a problem; determines its complexity; if the task is relatively simple, it applies typical knowledge models (production, network, frame, etc.) to solve it, forms a solution and sends it to the customer; if the task is complex and poorly structured or there is not enough initial data to develop a solution, then it determines the software, performs a search for experts in the inventory of intellectual resources, organizes the examination and develops models that will contribute to the solution of the task, forms a solution and sends it to the customer. It is possible to increase the performance of the cadastral systems by creating integrated databases of geospatial data of various cadastres and implementing special programs (systems) with decision-making support. Such systems are called intelligent geo-information systems or intellectual cadastres, the feature of which is the application of natural human intelligence and artificial intelligence when solving complex poorly structured tasks presented in the knowledge base as expert knowledge models. The basis of the cadastre of intellectual resources is information on the ratings of scientific and pedagogical workers of higher education institutions, as well as scientists of other scientific, scientific and industrial divisions, design bureaus, etc. Also, an important role during the selection of experts among scientific and pedagogical workers is played by a scientific degree, an academic title, as well as the subject area of scientific research of scientific and pedagogical workers, which is identified with a specialty.

Author Biographies

K. Meteshkin, Харківський національний університет міського господарства імені О.М. Бекетова

доктор технічних наук, професор, професор кафедри земельного адміністрування та геоінформаційних систем

M. Pilicheva, Харківський національний університет міського господарства імені О.М. Бекетова

кандидат технічних наук, доцент, доцент кафедри земельного адміністрування та геоінформаційних систем

L. Maslii, Харківський національний університет міського господарства імені О.М. Бекетова

старший викладач кафедри земельного адміністрування та геоінформаційних систем

References

Meteshkin, K., Pilicheva, M., Masliy, L. (2023) Comparative analysis of characteristics of cadastral systems of European Union countries. Municipal economy of cities. Series: Engineering science and architecture. 177(3). 85-91. DOI https://doi.org/10.33042/2522-1809-2023-3-177-85-91. [in Ukrainian]

Meteshkin, K., Pilicheva, M., Masliy, L. (2023) The complex problem of expanding the capabilities of cadastral systems and ways to solve it. Municipal economy of cities. Series: Engineering science and architecture. 180(6). 110-117. DOI https://doi.org/10.33042/2522-1809-2023-6-180-110-117. [in Ukrainian]

Resolution of the Cabinet of Ministers of Ukraine "Some issues of electronic interaction of electronic information resources" from September 8, 2016 No. 606. Retrieved from: https://zakon.rada.gov.ua/laws/show/606-2016-%D0%BF#n14. [in Ukrainian]

Lisova, T., Leyba, L. (2023) Separate issues of maintaining the state land cadastre. Analytical and comparative jurisprudence. 3. 224-228. DOI: https://doi.org/10.24144/2788-6018.2023.03.40. [in Ukrainian]

Hubar, Yu., Khavar, Yu., Vash, Ya. (2021) Ways of development of national cadastral systems. Modern achievements of geodetic science and production. І(41). 151-163. [in Ukrainian]

Cemellini В., Thompson R., Vries M., Oosterom P. Visualization/dissemination of 3D Cadastral Information Retrieved from: https://fig.net/resources/proceedings/fig_proceedings/fig2018/ppt/ts05c/TS05C_cemellini_rod_et_al_9591_ppt.pdf.

Grzelka1 K., Bydłosz J., Bieda A. (2023) Analysis of the prospects for the development of 3D cadastral visualisation. Acta Sci. Pol., Administratio Locorum. 22(1). 45–57. DOI https://doi.org/10.31648/aspal.8550.

Meliana I., Hajji R., Shojaei D. (2024) Exploring Spatial Interaction and Visualization Paradigms for 3D Cadastral Visualization. Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024. 19th 3D GeoInfo Conference 1–3 July 2024, Vigo, Spain, p. 237-246. Retrieved from: https://isprs-annals.copernicus.org/articles/X-4-W5-2024/237/2024/isprs-annals-X-4-W5-2024-237-2024.pdf.

ISO 19152-1:2024 Geographic information – Land Administration Domain Model (LADM). Retrieved from: https://www.iso.org/standard/81263.html.

Toshboeva R. (2024) Artificial Intelligence in the Cadastral System of Uzbekistan: Application Problems and Solutions. Naturalistacampano. 28. P. 1584-1594. Retrieved from: https://museonaturalistico.it/index.php/journal/article/view/300/232.

Hajiheidari A., Delavar M.R., Rajabifard A. (2024) Smart Urban Cadastral Map Enrichment – A Machine Learning Method. ISPRS Int. J. Geo-Inf. 13(3). 80. DOI https://doi.org/10.3390/ijgi13030080.

Asmika B., Sandya K., Neeharika Ch. (2020) Progress in artificial intelligence: technological singularity the future. International Journal of Grid and Distributed Computing. 13(2). P. 2571-2580.

DSTU 2481-94 Information processing systems, intelligent information technologies. Terms and definitions. Retrieved from: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=79130. [in Ukrainian]

Law of Ukraine "On Higher Education" dated July 1, 2014. No. 1556-VII. Retrieved from: https://zakon.rada.gov.ua/laws/show/1556-18#Text. [in Ukrainian]

Published

2024-12-17

How to Cite

Meteshkin, K., Pilicheva, M., & Maslii, L. (2024). CONCEPTUAL PROVISIONS FOR THE FORMATION OF THE CADASTRE OF INTELLECTUAL RESOURCES AS PART OF THE CENTER FOR THE PROCESSING OF CADASTRAL AND OTHER ADDITIONAL INFORMATION. Municipal Economy of Cities, 6(187), 211–217. https://doi.org/10.33042/2522-1809-2024-6-187-211-217

Issue

Section

статьи

Most read articles by the same author(s)